
New MapServer Raster Features

Frank Warmerdam
warmerdam@pobox.com

MUM
June 2004

Intro

Focusing on:
● GDAL raster render (from raster input)
● Raster output options.

NOTE: Options being discussed only work via
the GDAL renderer

Overview

● RGB to 8-bit via color cube
● Dithering to 8-bit
● OUTPUTFORMAT
● Raw Data Mode
● Image Reprojection
● Non-8bit Image Scaling
● Non-8bit Image Classification
● Raster Query

RGB to 8bit via Color Cube

● Need to support 24bit RGB input images,
and 32bit RGBA input images.

● Need to produce 8bit pseudocolored outputs
as gif or png.

● Method needs to be fast.

Color Cube Cont.

Approach:
● Pre-allocate 175 colors in “ cube” .
● Select nearest color in RGB space.
● 5 levels red / 7 levels green / 5 levels blue

● Preallocate 32 greyscale levels.
● Grey pixels use 32 level greyscale ramp.

Color Cube Cont.

RGB -> Index Calculation (per output pixel):
● 3 integer divisions.
● 2 integer multiplications
● 3 integer additions
● 1 table lookup.

 FAST!

Color Cube Cont.

Downside:
 – patchy color in slowing changing area

24bit: color cube:

Color Cube Cont.

Also note:
● Color cube will re-use existing colors.
● Color cube allocation uses hardcoded

“ COLOR_MATCH_THRESHOLD” of 1.
● 175+32 (205) is a lot of colors to tie up!
● If color cube allocation fails bad image

results.
● No user control over color cube size.

Dithering to 8bit

● Uses same color cube.
● Also uses all other already allocated colors.
● Uses Floyd-Steinberg error diffusion.
● Essentially uses a mix of colors over a

region to average out color error.

● Does not use optimal color table generation.

Dithering Cont.

Downsides:

● Slower (more computation per pixel)
● Result doesn't compress as well.
● Broken on Windows till early this week!

Dithering Cont.

Comparison:

 24bit: Color cube: Dithered:

OUTPUTFORMAT

Need:
● Flexible control of MapServer output formats
● Ability to control 8bit/24bit/rawmode.
● Ability to select GDAL formats.
● Ability to pass “ options” for output format.
● Ability to provide extra info like mimetype.

OUTPUTFORMAT Cont.

Approach:
● New mapfile OUTPUTFORMAT section.
● Declare many output formats.
● Internally define “ standard” output formats.
● Re-engineer all map/legend/refmap/scale

code to use outputFormatObj

OUTPUTFORMAT Cont.

OUTPUTFORMAT
 NAME gif
 MIMETYPE "image/gif"
 EXTENSION "gif"
 DRIVER "GD/GIF"
 FORMATOPTION "INTERLACE=ON"
END

OUTPUTFORMAT
 NAME jpeg
 MIMETYPE "image/jpeg"
 EXTENSION "jpg"
 DRIVER "GD/JPEG"
 IMAGEMODE RGB
 FORMATOPTION "QUALITY=80"
END

OUTPUTFORMAT Cont.

 OUTPUTFORMAT
 NAME geotiff_rgb
 MIMETYPE "image/tiff"
 DRIVER "GDAL/GTiff"
 IMAGEMODE RGB
 FORMATOPTION "TILED=YES"
 END

 OUTPUTFORMAT
 NAME geotiff
 MIMETYPE "image/tiff"
 DRIVER "GDAL/GTiff"
 IMAGEMODE PC256
 END

OUTPUTFORMAT Cont.

Used for:
● GD formats (gif/png/wbmp/jpeg)
● GDAL formats (ie. GeoTIFF, .img)
● PDF
● Flash (swf)
● Imagemap

OUTPUTFORMAT Cont.

IMAGEMODE:
● PC256: Traditional 256 color mode.
● RGB: 24bit RGB output (ie. Jpeg, png24)
● RGBA: RGB + alpha (transparency)
● BYTE/INT16/FLOAT32: Raw mode...

Raw Data Mode

Original Need:
● Ability to produce 16bit DEM data from MS.

WCS Needs:
● Preserve original image values.
● Support variety of data types (8/16/float)
● Support multispectral (any number of bands)

Raw Data Mode Cont.

Approach:
● New BYTE, INT16, FLOAT32 image modes
● ImageObj extended to hold non-GD image

arrays.
● GDAL raster renderer updated to support

producing these types.
● Added BAND_COUNT FORMATOPTION to

control number of bands generated.

Raw Mode Cont.

Caveats:
● Vector layers not rendered in rawmode.
● Non-GDAL raster drivers don't work.
● Ideally should support additional image

types.
● BAND_COUNT not defaulted from the

source file. Must be set explicitly if not 1.
● Some work is post MapServer 4.2 for WCS.

Image Reprojection

Need:
● Support for on the fly image reprojection as

is done for vector data.

Image Projection Cont.

Approach:
● Added module to reproject an image in

GDAL renderer.
● Uses existing GDAL renderer to “ pre-

render” higher resolution image in original
projection to resample from.

Image Reprojection Cont.

Caveats:
● Bugs in past with transparency (all fixed?)
● Only “ nearest neighbour” resampling.
● Problems estimating the proper input area in

“ world mapping” cases.
● Significant performance overhead (doubles

render time)
● Doesn't support resample via GCPs or other

non-projection models.

Non-8bit Data Scaling

Need:
● Ability to render non-8bit data sources (ie.

DEM, 16bit satellite images, science data)
● Ability to control scaling of values to 8bit (0

to 255) flexibly.

Scaling Cont.

Approach:
● Add scaling options to GDAL data loader.
● All scaling done before any render code

kicks in
● Render gets 8bit image.
● PROCESSING “ SCALE=<min>,<max>”
● PROCESSING “ SCALE=AUTO”

– Dynamic stretch based on actual data loaded.

Scaling Cont.

Caveats:
● Renderer doesn't know original values.
● Classification was screwed up.
● OFFSITE doesn't work well.
● NODATA values don't work.
● >256 entry color tables don't work.

Scaling Cont.

Example:

LAYER
 NAME raster_l
 TYPE raster
 DATA irvine.pix
 PROCESSING "BANDS=10"
 PROCESSING "SCALE=40,883”
 STATUS default
END

Scaling Cont.

Additional Notes:
● For RGB images, scaling can be controlled

for each band explicitly using SCALE_1,
SCALE_2, and SCALE_3.

● Can be applied to 8 bit images too for
constrast stretching!

● If not used for 16bit images, all values over
255 are truncated to 255.

Non-8bit Classification

Need:
● Ability to classify 16bit or floating point raster
● [pixel] should be substituted with the original

pixel value.
● To be fast – can't evaluate an expression for

each pixel processed!

Classification Cont.

Approach:
● Prescale image data to 16bit (up to 65536

buckets).
● Compute classification result for each

bucket.
● Use lookup to apply to image as rendered.
● Provide PROCESSING directives to control

scaling.
● For 16bit data no scaling needs to be done.

Classification Cont.

Caveats:
● Floating point data is still not exactly

classified.
● For floating point data, the .map file needs

explicit control of the scaling and buckets.
● If there are a lot of buckets, computing the

lookup table may still be expensive.
● NODATA and OFFSITE still don't work well.

Classification Cont.
LAYER
 NAME grid1
 TYPE raster
 STATUS default
 DATA data/float.tif
 PROCESSING "NODATA=-6"
 PROCESSING "SCALE=-100.5,100.5"
 PROCESSING "SCALE_BUCKETS=201"
 CLASS
 NAME "red"
 EXPRESSION ([pixel] < -3)
 COLOR 255 0 0
 END
 CLASS
 NAME "green"
 EXPRESSION ([pixel] >= -3 and [pixel] < 3)
 COLOR 0 255 0
 END
 ...
END

Raster Query

Need:
● Query support for raster layers.
● Ability to find the real underlying raster value

for science data.
● Smooth integration into existing query

approach.

Raster Query Cont.

Approach:
● Implement queryByPoint(), queryByRect()

and queryByShape() for rasters.
● Query result turned into a set of point

shapeObjs available via layer API.
● Each point has attributes for pixel values,

class name, and red/green/blue color.
● Point location is center of pixel.
● RASTER_QUERY_MAX_RESULT processing option to

limit result set size.

Raster Query

● MapScript can be used to get query results
using normal getResult(), getShape() calls

● Templates work normally.
● LAYER needs a TEMPLATE to be query

enabled (like vector layers)
● Implemented in MapServer 4.3 (CVS)
● Docs only in Wiki for now.
● Be wary of large result sets!

Raster Query Cont.
map = mapscript.Map('rquery.map')
layer = map.getLayer(0)
pnt = mapscript.Point()
pnt.x = 440780
pnt.y = 3751260

layer.queryByPoint(map,pnt,mapscript.MS_MULTIPLE,180.0)
layer.open()
for i in range(1000):
 result = layer.getResult(i)
 if result is None:
 break

 s = layer.getShape(result.shapeindex,result.tileindex)
 for i in range(layer.numitems):
 print '%s: %s' % (layer.getItem(i), s.getValue(i))

layer.close()

Raster Query Cont.

Template File:

 Pixel:

 values=[values]

 value_0=[value_0]

 value_1=[value_1]

 value_2=[value_2]

 RGB = [red],[green],[blue]<p>
 Class = [class]

