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Chapter 1
Using the libproj4 Library.

Although this cartographic projection library contains a large number of projections
the programmatic usage is quite simple. The main burden of usage is the selection
and correct usage of the parameters of the individual projections which is, in most
cases, a burden placed upon the user, not the programmer. Usage is very similar to
I/0 programming where a file is opened and a structure is returned that is used by
various I/O operation routines—a structure that contains all the details related to a
particular file. Other similarities with file handling is that more than one projection
can be processed concurrently and the structure is closed when finished.

1.1 Basic Usage

A cartographic projection is also a mathematical process like functions included
in a compiler’s mathematics library such as sin(x) to compute sinx and asin(x)
to compute the inverse, arcsinz (also referred to as sin™!'z). But unlike most
mathematical library functions, the forward, P, and inverse, P~!, cartographic
projection functions have a multivariate argument and a bivariate return value:

(/\’(b) — P_l(l‘,y,-”) (1'2)

where x and y are the planar, Cartesian coordinates, usually in meters, and A and
¢ are the respective longitude and latitude geographic coordinates in radians.

The biggest complication is the type and number of the additional functional
arguments constituting the complete argument list. There is always either the
Earth’s radius or several techniques for defining the Earth’s ellipsoid shape as well as
specifications for false origins and units of Cartesian measure. Individual projections
may have additional parameters that need to be specified. In all cases, it is necessary
for the user to refer to the individual projection description for details about the
individual projection parameters required.

Because of the large number of selectable projections, each with their own special
list of arguments, the following method was chosen to simplify the number of library
entries needed by the programmer to the following prototypes defined in the header
file projects.h:

#include <lib_proj.h>

void *pj_init(int nargs, char *args[]);
XY pj_fwd(LP 1lp, void *PJ);

LP pj_inv(XY xy, void *PJ);

void pj_free(void *PJ);
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The complexity of this system is not in programmatic usage as described in the
following text, but in understanding and properly using the cartographic control
parameters.

The procedure pj_init must be called first to select and initialize a projection.
Parameters for the projection are passed in a manner identical with the normal
C program entry point main: a count of the number of parameters and an ar-
ray of pointers to the characters strings containing the parameters. In this case,
the parameter strings are those cartographic parameters discussed in the sections
describing the individual projections. By using character strings as arguments the
selection of the projection and its arguments can be left to the user and thus avoid a
great deal of programming time decoding and implementing a traditional argument
list.

Upon successful initialization pj_init returns a void pointer to a data structure
that is used as the second argument with the forward, pj_fwd, and inverse, pj-inv,
projection functions. Because the data structure returned by pj-init contains all
the information for the computing the projection selected by the initialization call,
any number of additional initialization calls can be made and used concurrently.

If the initialization call failed then a null value is returned. See Section for
details on determining cause of failure.

The first argument argument to the forward and inverse projection function and
the function return is a type declared (in the header file projects.h) as:

typedef struct { double x, y; } XY;
typedef struct { double lam, phi; } LP;

which are the respective x and y Cartesian coordinates respective longitude, A,
and latitude, ¢, geographic coordinates in radians. If either the forward or inverse
function fail to perform a conversion, both values in the returned structure are set
to HUGE_VAL as defined in the math.h.

Two additional notes should be made about the header file projects.h: it
contains includes to the system header files stdlib.h and math.h, and several
predefined constants such as multipliers DEG_TO_RAD and RAD_TO_DEG to respectively
convert degrees to and from radians.

To illustrate usage, the following is an example of a filter procedure designed
to convert input pairs of latitude and longitude values in decimal degrees to corre-
sponding Cartesian coordinates using the Polyconic projection with a central merid-
ian of 90°W and the Clarke 1866 ellipsoid:

#include <stdio.h>
#include <lib_proj.h>
main(int argc, char **argv) {
static char *parms[] = {
"proj =p01y" ,
"ellps=clrk66",
"lon_O=90W"
};
PJ *ref;
LP idata;
XY odata;

if (! (ref = pj_init(sizeof (parms)/sizeof(char *), parms)) ) {
fprintf (stderr, "Projection initialization failed\n");
exit(1);

}

while (scanf("%1f %1f", &idata.phi, &idata.lam) == 2) {
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idata.phi *= DEG_TO_RAD;
idata.lam *= DEG_TO_RAD;
odata = pj_fwd(idata, ref);
if (odata.x !'= HUGE_VAL)
printf ("%.3£\t%.3f\n", odata.x, odata.y);
else
printf("data conversion error\n");
}
exit(0);
}

To test the program, the script

./a.out <<EOF

0 -90
33 -95
77 -86
EOF

should give the results:

0.000 0.000
-467100.408 3663659.262
100412.759 8553464 .807

When executing pj-init the projection system allocates memory for the struc-
ture pointed to by the return value. This allocation is complex and consists of one
or more additional memory allocations to assign substructures referenced within
the base structure. In applications where multiple calls are to pj_-init are made
and where the previous initializations are no longer needed it is advisable to free up
the memory associated with the no longer needed structures by calling pj_free.

In some cases it is convenient to include:

#define PROJ_UV_TYPE

before the inclusion of the 1ib_proj.h header file. This changes the declaration of
the forward and inverse entries to having a

typedef struct { double u, v; } UV;

type for both the first argument and functional return. The included program
lproj is an example where this is used and facilitates the processing of the I/0O
that can be either forward or inverse projection which is performed by substituting
the appropriate forward or inverse procedure interchangeably.

1.2 Projection factors.

Various details about a projections behavior including scale factors at selected ge-
ographic coordinates can be determined with the function:

#include <lib_proj.h>

int pj_factors(LP lp, PJ *P, double h, struct FACTORS *fac);

Argument 1p is the coordinate where the factors are to be determined, P points to
the projection’s control structure, h numerical derivative increment and fac is a
structure defined in 1ib_proj.h as:
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struct DERIVS {

double x_1, x_p; /* derivatives of x for lambda-phi */
double y_1, y_p; /* derivatives of y for lambda-phi */
};

struct FACTORS {

struct DERIVS der;

double h, k; /* meridional, parallel scales */

double omega, thetap; /* angular distortion, theta prime */
double conv; /* convergence */

double s; /* areal scale factor */

double a, b; /* max-min scale error */

int code; /* info as to analytics, see following */

};

#define IS_ANAL_XL_YL 01 /% derivatives of lon analytic */
#define IS_ANAL_XP_YP 02 /* derivatives of lat analytic */
#define IS_ANAL_HK 04 /* h and k analytic */

#define IS_ANAL_CONV 010 /* convergence analytic */

The variable code has bits set according to the defines where “analytic” refers to
equations within the projections providing the values rather than their determina-
tion by numerical differentiation.

The argument h may be 0. and a suitable default value will be used.

For a more complete, mathematical description of the elements in FACTORS see

Section [B.8]

1.3 Error handling.

Error detection is a combination of using the C library facilities relating to error
and the global projlib variable pj_error. To simplify matters for the user, the
application program only need to sense the pj_error for a non-zero value. If the
value is greater than zero a C library procedure detected an error and if less than
zero a libproj4 procedure detected an error.

To get a string that describes the error use the following:

#include lib_proj.h
char *emess;

emess = pj_strerror(pj_errno);

A null pointer is returned if pj_errno==0.

1.4 Character/Radian Conversion.

Two procedures in the LIBPROJ4 library are provided to perform conversion between
human readable character representation of geodetic coordinates and internal float-
ing point binary. These procedures are summarized by the following prototypes:

#include <lib_proj.h}

double pj_dmstor(const char * str, char ** str)
char *pj_rtodms(char *str, double rad, const char * signt)
void pj_set_rtodms(int frac, int con_w)
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The pj_dmstor function is patterned after the C language library strtod function
where str is a character string to be read for a DMS value to be returned as the
function value and the second character pointer returns a pointer to the next char-
acter in the string after the successfully decoded string. If a proper DMS value is
not found then a 0 is returned and a HUGE_VAL is returned for bizarre conversion
errors. In the latter case pj_errno may be set with a -16 value.

Function rtodms performs output formatting and creates a DSM string from the
input rad. The argument signt is a two character string where the first character
is to be taken as the positive sign suffix and the second as the negative sign suffix.
Normally, signt will either be "NS" or "EW". If signt is O then normal numeric
minus sign prefixes the numeric output.

Normal output of pj_rtodms formats to 3 decimal digits of seconds but this
precision can be adjusted with the pj_set_rtodms function by specifying the number
of significant digits to use with frac. If the argument con_w argument is not 0 then
constant width values are output (often useful in map labeling or tabular values).

1.5 Limiting Selection of Projections

Many applications will only need a small subset of the projections contained in the
library 1ibproj.a, but unless some action is taken, all of the projections will be
linked into the final process. This is not a problem unless the memory requirements
of the application are to be kept small or access to projections is to be restricted.
If there is a need to limit the number of projections, a simple two-step process

needs to followed. First create a header file, my _list.h for example, that contains
a list of macro calls PROJ_HEAD (id, text’, one for each projection to be part of the
application program. Argument id is the acronym of the projection and argument
text is the ASCII string describing the program (what appears after the colon in
proj’s -1 execution. The header file, nad_1ist, for program nad2nad is a an
example:

/* projection list for program my_prog */

PROJ_HEAD(lcc, "Lambert Conformal Conic")

PROJ_HEAD (omerc, "Oblique Mercator")

PROJ_HEAD (poly, "Polyconic (American)")

PROJ_HEAD (tmerc, "Transverse Mercator")

PROJ_HEAD (utm, "Universal Transverse Mercator (UTM)")

An easy way to create this list is to copy and edit the file pj_list.h in the source
distribution, which contains the entire listing of available projections, and edit out
of the copy all lines of unwanted projections.

Next, in one of the program code modules that includes the header file projects.h,
precede the include statement with:

#define PJ_LIST_H "my_list.h"
Be careful to only put this include in only one of the code modules because this define

action causes the initialization of the global pj_-1ist and multiple initializations will
cause havoc with the linker.
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Chapter 2

Internal Controls

To discuss the internal control of this system the description will be based upon
following the flow of the process from projection initialization to coordinate conver-
sion. Although extracts of the code and data structures will be presented here it
may be helpful for the reader to follow the description with frequent references to
the source code.

2.1 Initialization Procedures.

To initiate the cartographic transformation system it is necessary to execute a pro-
cedure that will decode the user’s control input into internally recognized parame-
ters and to establish a myriad of computational constants and process controls and
return to the calling procedure a reference to employ when performing transforma-
tions. In this system the entry is the procedure pj_init is passed a argument count
and character array in a manner similar to a C program’s main. The first operation
pj-init performs is to put the list of arguments into a linked list described in the
next section.

The reason for this copy operation is that it allows the system to add arguments
to the list and not violate const attributes of the input list and it also allows
marking each argument element that is used by the system. This latter feature is
useful in giving an audit trail for debugging usage of system.

The first extraction from the input list is to determine the identifier of the
projection to be used (+proj=<id>) and locating the entry id in the list:

struct PJ_LIST {
char *id; /* projection keyword */
PJ *(xproj) (PJ *); /* projection entry point */
char * const *descr; /* description text */

};

The following extract from the 1ib_proj.h header file shows how the projection list
is declared and initialized:

/* Generate pj_list external or make list from include file */
#ifndef PJ_LIST_H

extern struct PJ_LIST pj_list[];

#else

#define PROJ_HEAD(id, name) \

extern PJ *pj_##id(PJ *); extern char * const pj_s_##id;
#define DO_PJ_LIST_ID

#include PJ_LIST_H

15
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#undef DO_PJ_LIST_ID

#undef PROJ_HEAD

#define PROJ_HEAD(id, name) {#id, pj_##id, &pj_s_##id},
struct PJ_LIST

pj_list[]l = {

#include PJ_LIST_H

{0, 0, 0},
};

#undef PROJ_HEAD
#endif

In all but one situation of the usage of 1ib_proj.h the identifier PJ_LISTH is
undefined and thus only the external declaration of the projection list pj_list is
made. In the case of the file pj_list.c the only code in the file is:

#define PJ_LIST_H "pj_list.h"
#include "lib_proj.h"

which result in the following actions:

e the PROJ_HEAD macro is defined as a declaration of the external projection
function and an external description character string,

e the header file pj_list.h containing a list of PROJ_HEAD statement is read,

e PROJ_HEAD is redefined so as to create a structure array and initializes that
array by re-reading the header file pj_1ist.h

The reason for this seemingly convoluted operation is to simplify the installation
of new projections by merely creating the the PROJ_HEAD macro once in the file
containing the projection code and then simply copying this line into the list-defining
header file.

Once the projection initialization entry is determined from the list the next
operation is to call the projection entry defined in the list structure with a zero
(null) argument. The projection procedure will return a pointer to the PJconsts
structure whose top portion is defined in 1ib_proj.h. This structure pointer is
what is eventually returned by pj_init to the calling program after its contents are
fully initialized. The reason for having the projection return the structure pointer
is that the complete definition and size is defined by the selected projection.

At this stage all of the elements after the first five of the structure PJconsts
are filled in by following operations of pj_init. These components are found to be
commonly used and projection independent and thus more efficiently determined
by a common process.

The final step is to re-call the projection entry point previously used but now
with the pointer to the PJconsts stucture as the argument and allow the projection
to complete the initialization of the structure based upon the already initialize ele-
ments and other options in the argument link list that are unique to the projection.
Note that the base address of the base address of the argument list is now stored
in the structure.

If all goes well, the pointer to the structure PJconsts is returned to the user as
the functional return of pj_init.

2.1.1 Setting the Earth’s figure.

In initializing the PJconsts stucture the elliptical parameters are the first parame-
ters determined by a call to the function pj_ell_set. Its first operation is to search
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the parameter link-list for the definition of +R=<radius> and if found, the remain-
der of the initialization is for a spherical earth regardless of any ellipsoid parameters
on the list.

If the radius is not on the list, then a search the argument +ellps=<id> and a
search of the table

struct PJ_ELLPS {
char xid; /* ellipse keyword name */
char *major; /* a= value */
char =xell; /% elliptical parameter */
char #*name; /* comments */

};

is made and if found, the ellipsoid parameters from the second and third character
fields are pushed onto the parameter linked list.

The remainder of the PJconsts fields related to the ellipsoid or sphere are now
determined.

If neither a radius nor ellipsoid constants are found, an error condition exists.

2.2 Determinations from the argument list.

Control options are the list of projection parameters typically obtained from run
lines of programs or data bases. They consist of the option name optionally followed
by an equal sign and an option value that may be a integer, floating, degree-minute-
second (MDs or character string value. Control options may be prefixed with a +
sign that is ignored by following functions.

2.2.1 Creating the list.

One of the first functions of initialization of projection procedures in LIBPROJ4 is
to convert the string array argv into a linked list with the structure:

struct ARG_list {
struct ARG_list *next;
char used;
char param[1];

};

When each control parameter is stored in the list, the flag used is set to zero. If the

parameter is somehow tested or the argument used the flag is set to one. This serves

as an audit trail on projection usage if the verbose diagnostic call is employed.
The argument string is placed into the list with execution of the function:

#include <lib_proj.h>

paralist *pj_mkparam(char *str);

where paralist is a typedef of list structure. If pj_mkparam is unable to allocate
memory for the new argument then a NULL value is returned.

The calling program must use the returned pointer to either establish the starting
point of a list or add to the “next” value at the end of an existing list.

2.2.2 Using the parameter list

The function pj_param provides for searching for parameters and returning their
value from paralist.



18 CHAPTER 2. INTERNAL CONTROLS

#include <lib_proj.h>

PVALUE pj_param(paralist *pl, const char *opt)

where

typedef union {

double f£;

int 1i;

const char *s;
} PVALUE;
\begin{center}

Upon calling pj_param the argument opt character string contains the name of
the option desired with a prefix character of how the the option argument is to be
treated. The following is a list of the prefix characters and the nature of the return
value of pj_param.

t test for the presence of the string in the list. Re-
turn integer 1 is present else 0.

i treat the option argument as integer and return
the binary value.

d treat the option argument as a real number and
return double as the result.

r argument is degree-minute-second input and re-
turn type double value in radians.

s argument is a character string and return pointer
to string.

b argument is boolean; return integer 0 if value “F”,
“f”, “0” or integer 1 if the value is “T”, “t” or
“17,

In all cases where there is no argument value a 0 or NULL value is returned.
In practice, the b type is rarely used and it is understood that the presences or
absence of the option serves as a boolean flag with the t test.

2.3 Computing projection values

A review of the operations that are performed by the entry points pj_fwd and
pj-inv is necessary in order to understand what is performed by the system before
calling the individual projection procedures. The following operations are deemed
to be common to all forward projections even though they maybe seldom used in
some cases:

e The range of the latitude and longitude arguments is check. The absolute
value of latitude must be less than or equal to 90° (7/2 radians) and the
absolute value of longitude must be less than or equal to 10 radians (573°).

e (lear error flags.

e If geocentric latitude option is selected the latitude is changed to geodetic
latitude.

e Central meridian is subtracted from the longitude.

o If over-ranging is not selected the longitude is reduced to be between +180°.
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e The projection procedure is called.

e It errors, then set z—y to HUGE_VAL and return, else z—y values are multiplied
by the Earth’s radius or major elliptical axis, false Northing and Easting are
added and each are scaled to the selected units.

The main thing to note is that the projection functions only deal with longitude
reduced to the central meridian (no A — A\g terms) and an unit radius/major-axis
Earth.

In the case of the inverse projection, fewer checks of the input data can be done
by the inverse projection entry:

e (lear error flags.

e Adjust the Cartesian coordinates by rescaling, subtracting the false Easting
and Northing and dividing out the Earth’s radius or major-axis.

e (Call the inverse projection.

e If errors, set A—¢ to HUGE_VAL and return.

e Add central meridian to returned longitude.

e If over-ranging not selected reduce longitude range to between

e If geocentric latitude specified, change geodetic latitude to geocentric.

2.4 Projection Procedure.

Because the library was intended to have a large number of projection procedures
care was given to facilitating the coding of the procedures and to make them have
a similar structure. By following this guideline it is easy to develop new projections
(at least as far as the controlling code).

The following is the skeletal outline of a projection procedure:

<boiler plate---copyright/disclaimers, etc.>
#define PROJ_PARMS__ \

<local extensions to PJconsts structure>
#define PJ_LIB__

#include <lib_proj.h>
PROJ_HEAD(<entry_id>, "<expanded descriptive name>") "\n\t<type>,
<local defines, static variablesi, functions, ...>

FORWARD (<forward_id>) ;
<declarations and code for forward>
Xy.x =
Xy.y =
return (xy);
¥
INVERSE(<inverse_id>);
<declarations and code for inverse>

lp.phi =
lp.lam =
return (1p);
}
FREEUP;

if (P)
free(P);
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}

ENTRYO (<entry_id>)
<initialization code>
P->inv = <inverse_id>;
P->fwd = <forward_id>;
ENDENTRY (P)

where the material enclosed in angle braces is a form of comment for this demon-
stration.

The first thing to note is the defining of PJ_LIB__ which enables sections of
the header file that contain definitions and other material unique to the projection
procedures. The next item is the definition of PROJ_PARMS__ that defines extensions
to the structure that are unique to the current projection. Looking at the definition
in the header file 1ib_proj.h

typedef struct PJconsts {
XY (xfwd) (LP, struct PJconsts *);
LP (*inv) (XY, struct PJconsts *);
void (*spc) (LP, struct PJconsts *, struct FACTORS *);
void (*pfree) (struct PJconsts *);
const char *descr;

paralist *params; /* parameter list */
int over; /* over-range flag */

int geoc; /* geocentric latitude flag */
double

a, /* major axis or radius if es==0 */
e, /* eccentricity x/
es, /x e "~ 2 %/
ra, /*x 1/A %/
one_es, /* 1 - e"2 x/
rone_es, /* 1/one_es */
lam0, phiO, /* central longitude, latitude */
x0, yO, /* easting and northing */
kO, /* general scaling factor */
to_meter, fr_meter; /* cartesian scaling */
#ifdef PROJ_PARMS__
PROJ_PARMS__
#endif /* end of optional extensions */
} PJ;

shows how the projection unique values are treated. In cases of very simple pro-
jections, the definition may be omitted. Finally the inclusion of the 1ib_proj.h
header file.

The PROJ_HEAD macro is used to define the entry point to the projection, an
expanded description string and a string containing expanded information. The
first argument <entry_id> must match the name used in the ENTRYO macro. This
identifier argument is prefixed with PJ_ and is used as the external reference for the
projection and is the point where the projection is called for initialization.

There may be more than one entry point and thus more than one PROJ_HEAD and
ENTRYO combinations. A good example of this is the Transverse Mercator projection
which has two entries: tmerc and UTM. The Universal Transverse Mercator is a usage
of the Transverse Mercator with added constraints and controls of parameters but
remaining computations are identical.

Additional variants of ENTRYO(<id> are ENTRYn,<id>,<args> where n is 1 or
2 and which have a corresponding number of identifier args in the macro. The
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identifiers must be contained in the PJ_consts structure as pointers that are to be
set to 0 (NULL) at the beginning of initialization.

In all entry cases, the ENTRY macros checks the non-null status of the input
argument pointing to the structure and if null allocates memory for the structure
PJ_consts and clears or sets the first five members of the structure and returns
with with the structure address. For a non-null input argument control is passed
to the following code which should conclude with the macro ENDENTRY (<arg>). In
most cases arg is the pointer to the structure PJconsts but it can be a call to an
static, local function that also returns the pointer.

The FORWARD and INVERSE macros define the local, static entry points for the
respective forward and inverse projection calculations and their addresses are stored
in the PJconsts structure. In many cases there are two forward and inverse entries
for the cases of elliptical and spherical earth and the initializing entry will select the
ones to be stored on the basis of non-zero e previously set in PJconsts. Occasionally
there is only a forward projection for the spherical case and thus only a FORWARD
section. These two macros also declare the arguments and return structures xy and
1p.

In all cases, including initialization, the identifier pointing to PJ_consts is P.

Error conditions are best handled by four macros:

e F_ERROR for use in forward projection code and sets the global pj_errno to
-20 and returns,

e T FRROR is the same as above but for inverse projection code,

e E_FRROR_O for use in initialization code and it free allocated PJ_consts mem-
ory and returns a null pointer. It is assumed that some procedure call by the
initializing code has already set pj-errno.

e E_FRROR(<no>) same as above but also sets the external pj_errno to the
negative argument value.

The complexity of the entry to free the memory allocated to the structure
PJ_consts is dependent upon how many additional sub allocations have been made.
For projections of the spherical Earth there are usually no sub-allocations and the
prototype listed earlier is complete. Additional memory sub-allocations to be re-
leased is the same as the number of arguments in the initialization entry macros.

2.5 Setting new error numbers.

When developing new procedures or projections for the libproj library where er-
ror detection is part of the code do the following steps. Check the program file
pj-strerrno.c which contains a listing of all the libproj4 error numbers. If a
current error condition applies to the new error condition, then use that negative
number as the value to be assigned to pj_errno. Otherwise, install a new descrip-
tive string at the next to last line of the list pj_err_list with a new, negative error
number.
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Chapter 3

Analytic Support Functions

The material in this chapter expands upon equations and procedures employed
by the projection functions and how they are implemented in the C programming
environment. In most cases a description of the originating mathematical function
is presented rather than just the series or other simplification used for evaluation.
The reason for this is that the reader may have insights into how to improve the
evaluation and further enhance the performance of the system.

In many cases function naming goes back to early FORTRAN versions of GCTP
where an effort was made to collect common computing operations into globally
available subroutines. As with projection descriptions, all procedures that deal
with ellipsoidal or spherical operations are performed for the unit ellipsoid (a = 1)
or unit sphere (R = 1).

3.1 Ellipsoid definitions

N

S

Figure 3.1: The meridional ellipse.

From Fig. the components and symbols used in this document for defining

23
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the ellipsoid are summarized as follows:

semimajor axis a

semiminor axis b

a? —v?
excenticity e?> = 5
a
6/2
T 11
= 2 p
2 32
a®—b
second excentricity €2 = =
o 1-—e?
a—"b
flattening f =
a

The angle ¢ is geographic or geodetic latitude and A is geodetic longitude (the angle
of rotation of the meridianal plane about the N-S axis). Geocentric latitude, v, is
infrequently used in projection applications.
The distances PQ’ and PQ are the respective radii of the ellipsoid surface in the
plane of the meridianal ellipse and normal to the plane of the meridianal ellipse.
) Cl(l — 62)
PQ =R = 1 g)i? (3.1)
a

PQ =N = (1 — e2sin? ¢)1/2 (3:2)

3.2 Meridian Distance—pj mdist.c

A common function among cartographic projections for the ellipsoidal earth is to
determine the distance along a meridian from the equator to latitude ¢. The def-
inition of this distance is the integral of the radius of the spheroid in the plane of
the meridian (equation

® do
_ 2
M(p)=a(l—e )/0 1 st )2 (3.3)
which can be computed as
e2sin ¢ cos ¢
M(¢p)=al| E(¢,e) — ————— 34
(@) a( (6.¢) 1§$§¢> (3.9

where FE(¢,e) is the elliptic integral of the second kind. When e is small (as in
the case of the Earth’s eccentricity) a means of evaluating the elliptic integral is as
follows:

2 2.4
E(¢,e) = E¢+singcosp(by+ §b1 sin? ¢ + ﬁbg sinfp+---)

bp = 1—-F
b = b (2n — 1N 2 e
v ot 21! on — 1

1 123 (2n — 1)N]?  e2n
E = 1— —¢2— 4_ ...

22 T 92 p2¢ [ ol | 2n— 1
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In the LIBPROJ4 library three functional entries are used in the meridional
distance calculations:

void *pj_mdist_ini(double es)
double pj_mdist(double phi, double sphi, double cphi, const void
double pj_inv_mdist(double dist, const void *emn)

Function pj-mdist_ini determines E and the series coefficients b,, for the specified
eccentricity argument (e?) and returns a pointer to a structure of these values, en,
for use by the forward and inverse functions. In the case of an unreasonably large
value of €2, function pj.mdist_ini could fail and thus return a null pointer. The
degree required by the series is automatically determined by the procedure so as to
ensure precision commensurate with the type double on the host hardware.

Function pj-mdist returns the distance from the equator to the latitude phi.
In the interests of avoiding repeated evaluation of sine (sphi) and cosine (cphi)
of latitude (almost always computed for other reasons in the calling procedures)
these values are included in the argument list. Function pj_inv_mdist returns the
latitude for a distance dist from the equator. In both the forward and inverse
case the sign of the latitude and distance is carried though the evaluation so that a
negative latitude gives a negative meridian distance and conversely.

3.2.1 Rectifying Latitude

The rectifying latitude, u (or w) is a latitude on a sphere determined by the ratio
of the distance from the equator for a point on the ellipsoid at latitude ¢ divided
by the distance over the ellipsoid from the equator to the pole:

M(¢)

2 M(x/2) (3:5)

‘LL =

where the function M is the meridian distance from (3.4)).

3.3 Conformal Sphere—pj gauss.c

Determinations of oblique projections on an ellipsoid can be difficult to solve and
result in long, complex computations. Because conformal transformations can be
made multiple time without loss of the conformal property a method of determining
oblique projections involves conformal transformation of the elliptical coordinates
to coordinates on a conformal sphere. The transformed coordinates can now be
translated /rotated on the sphere and then converted to planar coordinates with a
conformal spherical projection. Pearson [10] gives a development of the conformal
transformation but assumes a zero constant of integration.

The conformal transformation of ellipsoid coordinates (¢, A) to conformal sphere
coordinates (x, A.) is

1+ esing
Ae = CA (3.7)
V1—e?

R = ———— 3.8
1 — e2sin? ¢y (3:8)

. Ce/2
X = 2arctan [Ktanc(ﬂ/4+¢/2) (HSlm’b) ] —7/2 (3.6)

where A is relative to the longitude of projection origin, R, is radius of the conformal

xen) ;
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sphere and
e2cost dg
= 1 _— .
C + T (3.9)
Xo = arcsin <sm %) (3.10)
C
c 1 —esin¢g Ce/2

where Y is the latitude on the conformal sphere at the central geographic latitude
of the projection.

To determine the inverse solution, geographic coordinates from Gaussian sphere
coordinates, execute:

A= A/C (3.12)
¢ = 2arctan tan'/® (/2 + m/4) — /2 (3.13)
K1/C (1 — esin@-,l)‘g/2
1+esing; 1

with the initial value of ¢;_1 = x and ¢;_; iteratively replaced by ¢ until |¢ — ¢;_1]
is less than an acceptable error value.
Procedures to compute the transformation are:

#include <lib_proj.h>

void *pj_gauss_ini(double es, double phiO,
double *chiO, double *rc)

LP pj_gauss(LP arg, const void *en)

LP pj_gauss_inv(LP arg, const void *en)

The initialization procedure pj_gauss_ini returns a pointer to a control array for
forward and inverse conversion at the latitude of origin phiO (¢¢). It also returns
the radius of the Gaussian sphere (rc). Procedures pj-gauss and pj-gauss_inv
are respective forward and inverse conversion of the latitude and longitude to and
from the Gaussian sphere. The storage pointed to by en should be release back to
the system upon completion of conversion usage.

3.3.1 Simplified Form of Conformal Latitude.

A common determination of the conformal latitude is made by setting K = 1 (based
upon zero constant of integration which causes y — 0 as ¢ — 0) and set C' = 1 which
seems to be equivalent to similar to having x — 7/2 as ¢9 — 7/2. Equation
now becomes:

. e/2
X = 2arctan [tan(ﬂ/4+¢/2) <1_T_Z:2§> ]77/2 (3.14)
A = A (3.15)

Determining ¢ from x is the same as discussed for equation [3.13]
The radius of the conformal sphere is determined by:

R = =& %o (1—e*sin® ¢) /2 (3.16)
€oS X0
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This new sphere radius is not how it is phrased by Snyder [14, page 160] or
Thomas [I8, page 134] but it serves as a useful equivalence when making a re-
placement funtion for pj_gauss_ini. The derivation of this factor was based upon
the requirement of unity scale factor at the Stereographic projection origin. For
the moment, this is the only projection that employs this procedure so beware in
applying it in other cases.

Although the precedure to perform the simplified Gauss latitude need not be as
complex, the operations are made compatible with the general use for compatibility.

#include <lib_proj.h>

void *pj_sgauss_ini(double es, double phiO,
double *chiO, double *rc)

LP pj_sgauss(LP arg, double *en)

LP pj_sgauss_inv(LP arg, double *en)

3.4 Authalic Sphere—pj_auth.c

Authalic operations relate to the sphere having the same surface area of an elliptical
earth. From the integral definition:

/R%osﬁdﬁ = a2(162)/(1._(;288?;2¢)2d¢ (3.17)

which is readily solved by binomial expansion of the denominator and term-by-term
integration:

2, 4
R%*sinf3 = a2(1—62)sin¢<1 36 sin? ¢+ e sint ¢ + € 65in% - )
L+n o21 in2"
= a*(1—¢? squE 1—|—2n 0] (3.18)

The constants of integration are eliminated to main equality when ¢ = § = 0 and
R (radius of the authalic sphere) is determined by ensuring ¢ = § = 7/2 and thus
is obtained from:

1
R = a(1-e)) < j;;e?" (3.19)
n=0

Finally, the authalic latitude is:

2n : 2n
. SlnqSZ T 2 10)
B = arcsin Z TTn - (3.20)
= 1+2n

= arcsin (sin o) Z Con Sin®" (b) (3.21)
where co,, are the collapsed constants determined by the initializing process speci-
fying e.

To obtain the geodetic latitude from the authalic latitude the Newton-Raphson
process can be used where the initial value of ¢ = :

sin 8 — sin ¢ Z Con SIN" ¢

oy = o+ — (3.22)
. )
cos ¢ nE:O 1 sin“" ¢
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Another authalic factor (currently lacking a name) is the ¢ function typically

defined as:
g = (1—¢% {% — 2—16 In <mﬂ (3.23)
= 2(1—€?)sin (br;) 11:—27:1 e*" sin®" ¢
= % sin 3

The series form of the function is used in the library function gqsfn.
LIBPROJ4 entries:

#include <lib_proj.h>

void* pj_auth_ini(double es, double *r)
double pj_gsfn(double phi, void*i en)
double pj_auth_lat(double phi, void* en)
double pj_auth_inv(double beta, void* en)

3.5 Axis Translation—pj_translate.c

This set of procedures performs axis translations for the spherical coordinate sys-
tem. The elliptical system can only be translated about the polar axis— a process
performed by the A\g or central meridian factor. One way for elliptical projections
to perform general translation is transformation of the elliptical coordinates to the
sphere and subsequent use of this procedure.

Mathematically, the forward translation is performed by:

sin(¢’) = sinasin¢g — cosacos ¢ cos A (3.24)
cos ¢sin A

tan(\ — = 3.25
an( f) sin v cos ¢ cos A + cos a sin ¢ ( )

and the inverse translation performed by:

sin(¢) = sinasing’ + cosacos @’ cos(N — ) (3.26)
cos ¢’ sin(\ — 3)

tan A = 3.27
a sin a cos ¢’ cos(N — [ + cos asin ¢/ (3.27)

The latitude « is the position of the North Pole of the original coordinates system on
the new system at a longitude (3 east of the central meridian of the new coordinates
(N =0). In most applications 5 = 0.

The library translation functions are:

#include <proj_lib.h>

LP pj_translate(LP base, void *en);
LP pj_inv_translate(LP shift, void *en);
void *pj_translate_ini(double alpha, double beta);

Execution of the initializing function pj_translate_ini will return a pointer to a
structure containing constants for the forward and inverse operations. A NULL value
will be returned if the procedure failed to successfully obtain memory.

Function pj_translate returns the translated original coordinates and con-
versely, pj-translate returns the translated coordinates back to the original values.
Users must execute free(en) upon end of usage.
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3.6 Transcendental Functions—pj trans.c

In order to avoid domain errors in calling several of the standard C library functions
several alternate entries are used:

#include <lib_proj.h>

double pj_asin(double)
double pj_acos(double)
double pj_sqrt(double)
double pj_atan2(double, double)

The pj-asin and pj_acos check that arguments whose absolute value exceeds unity
by a small amount are successfully resolved. Similarly a sufficiently small negative
argument to pj_sqrt will cause a return of zero. If both the arguments to pj_atan2
are sufficiently small it will return a zero value.

3.7 Miscellaneous Functions

These are short functions that date from origins in the GCTP system and perform
evaluations for various projections. Part of the purpose of developing GCTP was to
minimize repetitive program code.

3.7.1 Isometric Latitude kernel.

The function ¢

. . e/2
t =tan(r/4+ ¢/2) (m)

is the kernel of In(t) (Isometric latitude) that performs conformal mapping of a
spheroid to the plane. The kernel is kept separate because it is also frequently used
in the inverse form where ¢ is evaluated.

(3.28)

#include <lib_proj.h>

double pj_tsfn(double phi, double sinphi, e);

3.7.2 Inverse of Isometric Latitude.

This function determines the geodetic latitude from the isometric latitude 7 = In(¢).
The procedure is to iteratively solve for ¢ until a sufficiently small difference
between evaluations occurs.

1 —esing o/2
¢4 = m/2—2arctan t<1+esin¢> 1 (3.29)
where
t = exp(—-7)

and using an initial value of:
¢ = m/2—2arctan(t)
Library function prototype:
#include <lib_proj.h>

double pj_phi2(double tau, double e);

It is unknown how the library function got its name.
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3.7.3 Parallel Radius.

The distance of a point at latitude ¢ from the polar axis. Also termed the radius
of a parallel of latitude (distance X in figure and equation .

m = Ncos¢ = __acosd (3.30)
1—e2sin® ¢

where N is the radius of curvature of the ellipse perpendicular to the plane of the
meridian. A unit major axis (a) is used. The LIBPROJ4 prototype is:

#include <lib_proj.h>

double pj_msfn(double sinphi, double cosphi, es);

3.8 Projection factors.

The meaning of factors here is the definition of how a projection performs in terms
of various distortions and scaling errors. In some cases analytic functions are readily
available that can be included within the individual projections files and available
through the PJconsts structure. However, it is felt that a numeric determination
of these factors is preferable because they are an independent evaluation that de-
termines the factors by execution of the projection code and thus perform a check
on these implementations and not upon the merely the evaluation of the factor
procedure.

3.8.1 Scale factors.

Two important factors about a projection are the scaling at a given geographic
coordinate which is defined by:

cE@T e e
G e
R - _al=¢) (3.33)

(1 — e2sin? ¢)3/2

where h and k are the scale factors along the respective meridian and parallel. R is
the ellipsoid radius in the plane of the meridian and m is the parallel radius .
These equations are for the ellipsoidal Earth but can be readily simplified for the
spherical case by setting e = 0. Respective scale error is computed from the A and
k factors by subtracting 1.

Additional factors to be computed are:

d = (h?+k*+2hksing’)'/? (3.34)
Vo= (h* 4 k? - 2hksing)Y/? (3.35)
where
dyor 0 dy
sin 0’ 0p 0N _0¢ 0X (3.36)

a®(1 — e?)hk cos ¢
(1 — e2sin® ¢)2
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From a’ and b’ the respective maximum and maximum scale factors are obtained
from

i /

o = 4EY (3.37)
2
a —b
b = .
5 (3.38)
and the area scale factor found from

S = hksind’ (3.39)

In the case of conformal projections the scale factors must be equal and thus
the angular distortion give by

w = arcsin <Z _T_ :) (3.40)

will be zero.

The remaining element of the projection factors is convergence or grid declination
which is the azimuth of grid north (2 or Northing axis) in relation to true north. It
is determined by:

v = arctan2 92 (3.41)

Normally only of interest in formal military or cadastral grid systems.
When the projection modules are not able to provide the values for the partial
derivatives then the following numeric method is used:

0fo,0

02 %(fl,l —foia+ fio1— f-1,-1)0(8%) (3.42)

The function f is the forward projection used in the procedure pj_-deriv which
calculates the Cartesian coordinates for the four § offsets from the central point
and computes the four partial derivatives. Note that this method may fail if the
central point is within ¢ of the limits of the projection.
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Chapter 4

Cylindrical Projections.

The mathematical characteristics of normal cylindical projections is of the form:

v o= O (4.1)
9(9) (4.2)

That is, both lines of constant parallels and meridians are straight lines. The term
normal cylindrical is used here to denote the usage where the axis of the cylinder
is coincident with the polar axis. In the transverse and oblique cylindricals the
parallels and meridians are complex curves.

Although the example figures of the cylindrical projections are of the entire Earth
the cylindrical projection is poorly suited for very small scale mapping because of
distortion of the polar regions. However, large scale usage of Mercator in all normal,
transverse and oblique forms is in common usage in regions bordering the cylinder’s
tangency or secant lines. The normal Mercator projection is also in common use in
navigation because of the property of a loxodrome being a straight line.

4.1 Normal Aspects.

4.1.1 Arden-Close.

+proj=ardn_cls (Fig. 4.1 Mean of Mercator and Cylindrical Equal-Area
projections.

y1 = Intan (Z + g) Yo = sin ¢ (4.3)

z=A y=(y1+y2)/2 (4.4)

4.1.2 Braun’s Second (Perspective).
+proj=braun2 Fig. 4.1] Ref. [I5] p. 111]

x=A y= zsin o/ <2 + cos gb) (4.5)
5 5
4.1.3 Cylindrical Equal-Area.

+proj=cea [+lat_O= | +lat_ts=] Fig.
Standard parallels (0° when omitted) may be specified that determine latitude of

33
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Table 4.1: Alternate names for the Cylindrical Equal-Area projection and their
associated control option.

Projection Name (Lat_ts=) ¢y
Lambert’s Cylindrical Equal-Area 0°

Berhrmann’s Projection (1910) 0°

Limiting case of Craster 37°4

Trystan Edwards 37°24

Gall’s Orthographic, Peter’s 45°

Peter’s Projection 44.138° (Voxland)

46°2’ (Maling)
M. Balthasart’s Projection 55° (Snyder)
50° (Maling)

true scale (k = h = 1). See Tablefor other names associated with this projection.

sin ¢
=\ = 4.
T COs ¢g Y p—— (4.6)

4.1.4 Central Cylindrical.

+proj=cc Fig. [4.1| Ref. ([I5 p. 107, ]
Cylindrical version of the Gnomonic Projection. Of little practical value.

x=A y =tan¢ (4.7

The transverse aspect by Wetch is given as:

. cos ¢ sin A _ arctan tan ¢ (4.8)
1 —cos? ¢sin® \)~1/2 v= cos A '

4.1.5 Cylindrical Equidistant.

+proj=eqc [+lat 0= | +lat_ts=] Fig. H
The simplist of all projections. Standard parallels (0° when omitted) may be speci-
fied that determine latitude of true scale (k = h = 1). See Table[4.2]for other names
associated with this projection and corresponding ¢, setting.

T = A COS Py y=0o (4.9)

4.1.6 Cylindrical Stereographic.

+proj=cyl_stere [+lat 0=] Fig.
Standard parallels (0° when omitted) may be specified that determine latitude of
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Figure 4.1: Cylinder projections I
A—Arden-Close, B—Cylindrical Equal-Area, C—Braun’s Second, D—Gall’s Ortho-
graph/Peter’s (¢g = 45°), E-Pavlov and F-Central Cylindrical.

true scale (k = h = 1). See Table[4.3|for other names associated with this projection.

T = Acos g y = (14 cosd¢p) tan% (4.10)

4.1.7 Kharchenko-Shabanova.
+proj=kh_sh Fig.

107
= \cos —— 4.11
T = Acos 180 (4.11)
y = $(0.99 + $2(0.0026263 + $20.10734)) (4.12)
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Table 4.2: Alternate names for the Equidistant Cylindrical projection and their
associated control option.

Projection Name (lat-ts=) ¢o
Plain/Plane Chart 0°
Simple Cylindrical 0°
Plate Carrée 0°
Ronald Miller—minimum overall scale oans
. . 37°30
distortion
E. Grafarend and A. Niermann 42°
Ronald Miller—minimum continental can/
. . 43°30
scale distortion
Gall Isographic 45°
Ronald Miller Equirectagular 50°30’

E. Gradarend and A. Niermann
minimum linear distortion

61.7°

Table 4.3: Alternate names for the Cylindrical Stereographic projection and their
associated control option.

Projection Name (lat_0=) do
Braun’s Cylindrical 0°

BSAM or Kamenetskiy’s Second 30°

Gall’s Stereographic 45°
Kamenetskiy’s First Projection 55°

O.M. Miller’s Modified Gall % = 66.159467°
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4.1.8 Mercator.
+proj=merc [lat_ts=] Fig. Ref. [14, p. 41, 44]

Scaling may be specified by either the latitude of true scale (¢¢s) or setting kg with

+k= or +k_0=.

Spherical form.

Forward projection:
In tan (% + %

xTr = ko)\ Yy = ko 1 ! 1+ Sin¢ (413)

2 1 —sing¢

ko = cos ¢y (4.14)

Inverse projection:

= 2/ko 6= {arctan[sinh(y/k:o)] (4.15)

7 — 2arctan[exp(—y/ko)]

Elliptical form.

Forward projection:

x = koA y = kolnt(p) (4.16)
ko = m(¢rs) (4.17)

where ¢() is the Isometric Latitude kernel function (see and m(¢) is the parallel
radius at latitude ¢ (see[3.7.3)). Inverse projection:

A=z/ko ¢ =t~ (exp(—y/ko)) (4.18)

4.1.9 O.M. Miller.
+proj=mill Fig.|4.3| Ref. [14] p. 88]

SIntan ( + 2¢)

Sarcsinh[tan(3¢)]

T=A y=1 4 4.19
5. (1+sinte (119
g In PE——
1 —singo
For the inverse
5 arct 4,0 _ 5
A==z ¢ = g are an[e:xp(54y)] g7 (4.20)
5 arctan([sinh(zy)]

4.1.10 O.M. Miller 2.
+proj=mill_2 Fig. 4.3

3 T ¢
x=A\ y=5 Intan (4 + 3) (4.21)
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Figure 4.2: Cylinder projections II
A-Cylindrical Stereographc (Braun’s), B—Gall’s Stereographic (¢9 = 45°), C-
Kharchenko-Shabanova, D—Mercator, E-Tobler alternate #2 and F-Tobler alter-
nate #1.

4.1.11 Miller’s Perspective Compromise.

+proj=mill per Fig.|4.3

x=A y= <Sin(;S + tan Z)) (4.22)

4.1.12 Pavlov.
+proj=pav_cyl Fig.

z=A y=<¢

(4.23)

_ 0531 5 0.0267
3 5
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Figure 4.3: Cylinder projections III
A—Cylindrical Equidistant, B-Miller, C-Gall’ Isographic, D—Miller 2, E-Tobler
World in a Square, F-Miller Perspective, G-Urmayev II, H-Urmayev III.
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4.1.13 Tobler’s Alternate #1

+proj=tobler_1 Fig. 77
This is alternate to to O.M. Miller’s projection.

=\ y = (gb + é¢3) (4.24)

4.1.14 Tobler’s Alternate #2

+proj=tobler 2 Fig. 77
This is alternate to to O.M. Miller’s projection.

_ _ s 16
2=\ y_<¢+6¢> +24¢> (4.25)

4.1.15 Tobler’s World in a Square.
+proj=tob_sqr Fig.

=N y = /msin¢ (4.26)

4.1.16 Urmayev Cylindrical II.

+proj=urm 2 Fig. 4.3

oN 2
o= (‘fo) (4.27
x=A (4.28
188 1
=¢(1+ 0+ -— 2 4.2
Y ¢< T 131" " 80640 ) )

(
The y-axis may be also expressed by: (4.
cs = 0.1275561329783 (4.31
cs = 0.0133641090422587 (
(

y=(¢+c30 + c50°)

4.1.17 Urmayev Cylindrical III.

+proj=urm_3C Fig.
aop = 0.92813433 as = 1.11426959 (4.34)
z = RA y=R (a0 + %qﬁS) (4.35)

4.2 Transverse and Oblique Aspects.

4.2.1 Transverse Mercator

+proj=tmerc
+proj=utm
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Spherical

Forward projections:

B = cos¢sin A (4.36)
Bko 1y (1+B

z=4 2" (1_3) y = Rk [arctan (tan ) — gbo] (4.37)
Rkotanh™' B cos A

Inverse projection:

D= Riko + o (4.38)
. sin D
¢ = arcsin (cosh x’) (4.39)
inh 2/
A = arctan (S:Olsg ) (4.40)
o = Riko (4.41)
Transverse Mercator — Gauss-Kriiger
Forward projection:
x A3 cos® ¢
N Acos ¢ + T(l -2 +n?)
A% cos® ¢ 2 4 44 2 2,2 4.49
+T(5—18t + t* 4 14n* — 58t%n%) (4.42)
)\7 7
+ (;Llsd’(m — 47982 + 179¢* — 15)
Yy o M(¢) n AZsin ¢ cos ¢
N N 2!
)\4 : 3
+ 2 SO @ ZCOS ¢ (5 — 12+ 9% + 4n?)
: 4.43
A8 sin ¢ cos® ¢ 9 4 9 9 9 (4.43)
——— (61 — 58t" +t* 4 270n" — 330t™n
6!
)\8 : 7
W(m% — 3, 111¢2 + 543t* — 15)
where
a
N = Ry (4.44)
a(l—e?)
R= TSR (4.45)
t =tan¢ (4.46)
o2
n = cos® ¢ (4.47)

1—e2?
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and where M(¢) is the meridianal distance. Inverse projection: Given the “foot-
print” latitude ¢, = M~1(y):

- t1$2 t11‘4
0= SN, AR, N?

61 + 90t2 + 4677 + 4:5#11 - 2527:%77%

(54 3tT + 17 — 4 — It}

t 6
B 6'1:13$N5 =30t + 10077 — 665 — 90t77¢i (4.48)
T\ +88nF + 225t n1 + 84tTn] — 192t3n]
t11‘8 9 4 6
+ iRy (1985 + 363367 + 4,005} + 1, 575¢))
x :L‘3

= - 14262 +n?
cos Ny 3!cos¢Nf’( + 2t +m)

N x5 5+ 6n7 + 28t — 3171 + 8t1n1 (4.49)
5lcos NP \ +24t7 —4nf + 4tin} + 24tTn) '
7
- W(m +662t2 + 1,320t] + 720t9)
: 1
4.2.2 Gauss-Boaga
Forward projection:
A3 cos
N_)\COS¢+T¢( —t2 4+ n?)
A’ cos® ¢ 2 | 44 2 2,2 (450)
+T(5—18t +t* 4 149 — 58t%n?)
Yy M (o) n A2 sin ¢ cos ¢
N N 2!
A% sin ¢ cos
+ #(5 — 24+ 99° + 4nh)
)\6 o .5
W(Gl —58¢2 + ¢4 + 27002 — 330£2%)
Inverse projection:
22t
¢:¢1 2'N2(1+771)
24 )
+ NG (5+ 362 + 697 — 6tIn? — 3t — 9tint (4.51)
26
t
~ Nlﬁ (61 + 90£2 4 45tF + 10717 — 16237 — 45t1n?)
3
T T
A= - (14 2t2+7?)
Ny 3! N} te
cos ¢p1 N1 ] cos ¢1.V; (4.52)

€ 2 4

4.2.3 Oblique Mercator

+proj=omerc (see below for full list of options)
The oblique Mercator projection is designed for elongated regions aligned along a
geodesicﬂ arc (Great Circle) where the cylinder of the projection is tangent to the

1 The centerline is a true geodesic only for the spherical case and approximates a geodesic in
the ellipsoidal case.
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sphere or ellipsoid (kg = 1). Ellipsoid equations presented here are based upon
Snyder’s [14] p. 66-75] development of Hotine’s [7] “rectified skewed orthomorphic”
projection and a development found in material by EPSGr [2]. In none of these
sources were the developments sufficiently complete to perform projections of several
common grid systems and it was necessary to merge operations to create a more
general procedure.

Two methods are used to specify the projection parameters: by specifying two
points that lay on the centerline of the projection or by specifying the geographic
coordinates of the central point on the centerline and specifying an azimuth of the
centerline. The latter method is most commonly used for grid systems.

Two point method

Parameters of the two-point methods are as follows:

lat_1= (¢1, A1) latitude and longitude of the

lon_1= first point on the centerline

lat_2= (¢2, A2) latitude and longitude of the
lon 2= second point on the centerline

lat 0= ¢o latitude of the center of the map

k 0= ko scale factor along the centerline
no_rot if present, do not rotate axis

Note that the central meridian (lon_0) common to most projections is not deter-
mined by the user. Restrictions on parameter specification is such that a centerline
may not coincide with a meridian (Transverse Mercator case) nor coincide with the
equator (simple Mercator case). Also, ¢1 # ¢o. First, compute factors common to
both control specification method. For ¢¢ # 0 then

¢2 A 3
B= (1 + T COs ¢0) (4.53)
)}
A= Brg =) (4.54)
1 — e2sin” ¢g
to = U(¢o) (4.55)
B(l—e?)2
D= (1—e )22 ; (4.56)
cos ¢o(1 — e2sin” ¢) 2
F=D=++/D2—-1 taking sign of ¢q (4.57)
E=t8F (4.58)

where ¥() is the Isometric Latitude kernel function (pj_tsfn). Set D = 1if D% < 1.
other wise

B=(1-¢*"2 A =k E=D=F=1 (4.59)
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Now continue with initialization unique to the two point method:

t1 = V(¢1) (4.60)
ty = V(¢2) (4.61)
H=1tP (4.62)
L=t} (4.63)
E
F=z (4.64)
G=(F-1/F)/2 (4.65)
E? - LH
L—-H
S (4.67)
No = ; Az _ éarctan (l‘i tan {Jj(xl - /\Q)D (4.68)
~o = arctan (W) (4.69)
o = arcsin(D sin ) (4.70)

Unless no_rot is specified the axis rotation v is set from «, and rotation is about
the ¢g position.

Central point and azimuth method
The parameters for this case are:

lat 0= (¢o, Ae) latitude and longitude of the central point of

lonc= the line.

alpha= . azimuth of centerline clockwise from north at the
center point of the line. If gamma is not given then a.
determines the value of ~.

gamma= -~ azimuth of centerline clockwise from north of the rec-
tified bearing of centre line. If alpha is not given, then
gamma is assign to o from which «.. is derived (see equa-
tion [L71).

k 0= ko scale factor along the centerline

ro_rot if present, do not rotate axis

no_off if present, do not offset origin to center of projection
(UO = 0)

. To determine initialization parameters for this specification form of the projection
first determine B, A, tg, D, F and E from equations through and then
proceed as follows:

sina, = Dsiny (4.71)
F—-1/F

G = T/ (4.72)

o= A arcsm(gtan %) (4.73)

Common Initialization

If no_off is specified then
U, =0
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otherwise the u axis is corrected by:

A
Ue = :N:Eatan2(\/ D? —1,cos ) (4.74)

taking the sign of ¢g.

Forward elliptical projection

The first phase is to convert the geographic coordinates (¢, A) to the intermediate
Cartesian system (u,v) where the u axis is coincident with the centerline of the
projection and the projection (u,v) system origin is at the aposphere equator and
longitude Ag.

First compute

V =sin[B(A — Ag)] (4.75)
If |¢| # 7/2 then:
E
_ 4.76
M TOL o
_ w (4.78)
. —V cos fyOT—i— S'sin g (4.79)
A 1-U
s <1+U> Ul #1 (4.80)
00 Ul=1
M = cos[B(A — X\o)] (4.81)
A .
- Eatan2(5 cosyo + Vsinyo, M) M #0 (4.82)
AB(X — Xo) M=0
otherwise:
A T __ Y0 _ o4
v = Elntan (Z$?> u_¢E (4.83)

If rotation is suppressed by the no_rot option then
r=u y=v (4.84)
else
U= —Ug T = vcosy + usiny Yy =ucosy —vsiny (4.85)
Inverse elliptical projection
First rotate (z,y) system into (u,v) system:

v =T Ccosy — ysiny u=1ycosy+ xrsiny+ u. (4.86)
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B
o —on(2) o
g1 .
V' =sin (T) (4.90)
U — V! cos%; S’ sin vy (4.91)

If |[U'| =1, then ¢ = £7/2 taking sign of U’ and A = Ag. Otherwise

1

1-U'\1]F
7 1—esing z
= — =92 _— 4.
¢ 5 arctan t(l +esin¢) ] (4.93)
1 B
A= Eatan? {S/ cosyg — V' sin g, cos <;>} (4.94)

where equation is solved by iteration in function pj_phi2.

Examples.

The first example of this projection is the Timbalai 19487R.S.O. Borneo grid system
from EPSG [2][p. 35-36] defined by:

proj=omerc a=6377298.556 rf=300.8017
lat_0=4 lonc=115 alpha=53d18’56.9537
gamma=53d7°48.3685 k_0=0.99984
x_0=590476.87 y_0=442857.65

Lon/lat | Easting/Northing
115d48’19.8196”E 679245.73
5d23’14.1129”N 596562.78

Zone 1 of the Alaska State Plane Coordinate System uses the Oblique Mercator
projection as in this NAD27 example:

proj=omerc a=6378206.4
es=.006768657997291094

k=.9999 lonc=-133d40 lat_0=57
alpha=-36d52°11.6315

x_0=818585.5672270928 y_0=575219.2451072642
units=us-ft

Lon/lat | Easting/Northing
-134d00’00.000” 2615716.535
55d00’00.000” 1156768.938

The values agree with those computed by cctp [21] 20].
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4.2.4 Cassini.
+proj=cass Ref. [14, p. 94-95]

Spherical form.

Forward projection:

x = arcsin(cos ¢ sin ) y = atan2(tan ¢, cos \) — ¢g (4.95)
Inverse projection:

¢ = arcsin [sin(y + ¢g) cos z] A = atan2 (tan z, cos(y + ¢o)) (4.96)

Elliptical form.

Forward projection:

N = (1 — e?sin? ¢) /2 (4.97)
T = tan® ¢ (4.98)
A= \cos¢ (4.99)
2
C=1- = cos® ¢ (4.100)
A3 AD
r=N <A—T6 — (8—T+8(J)T120> (4.101)
A? At
y = M(¢) — M(¢o) + N tan ¢ <2 +(5—T+6O)24> (4.102)

where M() us the meridianal distance function (3.2)). Inverse projection:
¢' =M~ (M(¢o) + ) (4.103)

If ¢’ = w/2 then ¢ = ¢’ and A = 0 otherwise evaluate T and N above using ¢’ and

R=(1-¢*)(1—e2sin?¢)~3/? (4.104)

D =z/N (4.105)
) ,N (D? D*

¢ =¢ —tano = (2 —(1+ 3T)24> (4.106)

A= (D - T%S +(1+ 3T)T11)55> / cos ¢’ (4.107)

4.2.5 Swiss Oblique Mercator Projection

+proj=somerc [
The Swiss Oblique Mercator Projection (a tentative name based upon the Swiss
usage in their CH1903 grid system) is based upon a three step process:

1. conformal transformation of ellipsoid coordinates to a sphere,

2. rotational translation of the spherical system so that the specified projection
origin will lie on the equator, and

3. Mercator projection of geographic coordinates to the Cartesian system.
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The projection cylinder is tangent at the projection origin (A, ¢9) with zero scale
error at the projection origin (kg = 1) with minimum error extending east-west
near the central meridian. In this projection, axis rotation only occurs about an
axis normal to the plane of the central meridian (Wray’s “simple oblique aspect”
[8, pages 135-138]).

For the forward projection the input geographic coordinates are processed in
following manner:

(\,¢) — pj_gauss — pj_translate — (X, ¢')

where pj_gauss and pj_translate are the respective conversion to Gaus-
sian sphere and axis translation-rotation procedures. Then standard, spherical Mer-
cator projection is applied in-line for conversion to (x,). Final scaling is per-
formed by multiplying the radius of the conformal sphere, returned by the Gauss
initialization, and with k.

Inverse projection follows the reverse sequence of the above steps by using the
inverse Mercator projection, inverse of spherical coordinate transformation and in-
verse from the Gaussian sphere to the ellipsoid coordinates.

The following example demonstrates the example from [I} p. 9] where the control
parameters are

+proj=somerc
+ellps=bessel
+lon_0=7d26°22.50
+lat_0=46d457°08.66
+x_0=2600000
+y_0=1200000

and geographic and Swiss projection coordinates are:

A =8°9'11.11127154" E « 2679520.05 Easting (4.108)
¢ = 47°03'28.95659233" N « 1212273.44 Northing (4.109)

This projection has general application for grid system that have proportionally
longer extensions along the Easting.

4.2.6 Laborde.

+proj=labrd +azi=
The Laborde projection was developed and exclusively used for the Madagascar
Grid System with these parameters:

+proj=labrd
+azi=18d54’
+lat_0=18d54°S
+lon_0=46d26°13.95"E
+k_0=0.9995
+x_0=400000
+y_0=800000
+ellps=intnl

This projection should not be confused with the Hotine Oblique Mercator nor should
the later be used as a substitute. [I5], p. 162].
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The following are initialization steps:

R=(1-¢%)(1—e?sin?¢)~3/2

N = (1 —e?sin? ¢) /2

R, = (N R)Y?geometric mean for radius of Gauss sphere

¢os = arctan((Ro/No)'/? tan ¢)

A = sin ¢/ sin ¢os
%1 1+ esin ¢q

¢= 2 nl—esin¢0
1—cos2A,
o= 12R2k3
sin2A4
Cy = -
12R2k3
Cc = 3(03 - Cl?)
Cq =6C,Ch

Forward computations:

Wi

— Alntan(n/4 + ¢o/2) + Intan(w/4 + ¢os/2)

Alntan(w/4+ ¢/2)

eA  1l+esing

Vo=—1In

2 1—esing

bs = 2(tan"exp(V; —

I :¢s_¢05

Va+C) —w/4)

I, = A?sin ¢, cos ¢ /2
I3 = A*sin ¢ cos® ¢ (5 — tan? @) /24
= A% sin ¢ cos g5 (5 cos® ¢, — sin? b)) /24

Iy = Acos ¢

I5 = A3 cos® ¢4 (1 — tan® ¢,) /6
= A3 cos ¢4 (cos? s — sin? p) /6
Is = AP cos® ¢4 (5 — 18tan? ¢, + tan ¢,)/120
= AP cos ¢ (5 cos? p, — 18 cos? g sin? ¢, + sin ¢,) /120
zg = koRgA(Ly + N (I5 + N*I5))
Yy = koRy(I1 + N2 (I2 + \213))

Vi = 3xgy§ — 1:3

Vo = y;’ - 3$3yg

T=x4+ Co V1 4+ Cyp Vo
y=1yg— CoV1 +Co Vs
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50 CHAPTER 4. CYLINDRICAL PROJECTIONS.

Inverse formulas:

Vi = 3xy? — 23 (4.138)
Vo = o3 — 322y (4.139)
Vi = 2® — 102%y® + 5ay? (4.140)
Vi = bxty — 1022y3 +4° (4.141)
Tg =2 — CVi —Cy Vo +C. V3 +CyVy (4.142)
Yg =Y+ CyVi — C Vo — CyV3 + C.V,y (4.143)
¢s = ¢os + yg/(ngO) (4144)
¢e = d)s + ¢0 - ¢Os (4145)
Iterate
(4.146)
Vi = Alntan(n/4 + ¢./2) (4.147)
eA 1+ esing,
= —In——F——— 4.14

Ve= o, (4.148)
t=¢s—2(tan"texp(Vi — Vo + C) — 7/4) (4.149)
be = e+t (4.150)

until || < e

(4.151)

R. = a(l —€*)(1 — €*sin® ¢.) 7/ (4.152)
I = tan ¢ /(2R Ryk3) (4.153)
Iy = tan ¢5 (5 + 3tan® ¢,)/(24R. RO kq) ( )
Iy =1/(cos psRykoA) (4.155)
Io = (14 2tan® ¢,)/(6 cos quRSkS’A) ( )
I; = (5 + 28tan? ¢, + 24 tan ¢,) /(120 cos ¢SR2k8A) ( )
¢ = ¢ — Iya} + Isx) ( )
(4.159)

A= Igl'g — I1()$3 + 111{1,‘2



Chapter 5

Pseudocylindrical
Projections

Pseudocylindrical projections have the mathematical characteristics of

r = f(\o)
y = 9(¢)

where the parallels of latitude are straight lines, like cylindrical projections, but the
meridians are curved toward the center as they depart from the equator. This is
an effort to minimize the distortion of the polar regions inherent in the cylindrical
projections. Pseudocylindrical projections are almost exclusively used for small
scale global displays and, except for the Sinusoidal projection, only derived for
a spherical Earth. Because of the basic definition none of the pseudocylindrical
projections are conformal but many are equal area.

To further reduce distortion, pseudocylindrical are often presented in interrupted
form that are made by joining several regions with appropriate central meridians
and false easting and clipping boundaries. Figure [5.1] shows typical constructions
that are suited for showing respective global land and oceanic regions. To reduce
the lateral size of the map, some uses remove an irregular, North-South strip of the
mid-Atlantic region so that the western tip of Africa is plotted north of the eastern
tip of South America.

5.1 Computations.

A complicating factor in computing the forward projection for pseudocylindricals is
that some of the projection formulas use a parametric variable, typically 8, which
is a function of ¢. In some cases, the parametric equation is not directly solvable
for 8 and requires use of Newton-Raphson’s method of iterative finding the root of
P(0). The defining equations for these cases are thus given in the form of P(6) and
its derivative, P’(6), and an estimating initial value for 6y = f(¢). Refinement of 0
is made by 6 «— 8 — P(0)/P’(6) until |P(0)/P’(#)| is less than predefined tolerance.

When known, formula constant factors are given in rational form (e.g. /2/2)
rather than a decimal value (0.7071) so that the precision used in the resultant
program code constants is determined by the programmer. However, source material
may only provide decimal values, typically to 5 or 6 decimal digits. This is adequate
in most cases, but has caused problems with the convergence of a Newton-Raphson
determination and degrades the determination of numerical derivatives.

Because several of the pseudocylindrical projections have a common computa-
tional base, they are grouped into a single module with multiple initializing entry
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52 CHAPTER 5. PSEUDOCYLINDRICAL PROJECTIONS

Figure 5.1: Interupted Projections.
Interupted Goode Homolosine: A—continental regions, B—oceanic regions.

points. This may lead to a minor loss of efficiency, such as adding a zero term in
the simple Sinusoidal case of the the Generalized Sinusoidal.

5.2 Spherical Forms.

5.2.1 Sinusoidal.

Equal-area for all cases.

Name +proj= figure Ref.
General Sinusoidal gn_sinu +m= +n=
Sinusoidal
Sanson-Flamsteed sinu [14, p. 243-248]
Eckert VI eck4 [T7, p. 220]
McBryde-Thomas mbtfps [T7, p. 220]
Flat-Polar Sinusoidal
x=CA(m+cosf)/(m+1) (5.1)
y=0C0 (5.2)
C=+v(m+1)/n (5.3)
P(f) =m6 +sinf —nsin¢ (5.4)
P'(0) =m + cosf (5.5)
fo = o (5.6)
m n c
Sinusoidal (Sanson-Flamsteed) 0 1 1
Eckert VI 1 1+7/2 2/V2+7

McBryde-Thomas Flat-Polar Sinusoidal 1/2 14 7/4 6/(4+ )
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Figure 5.2: General pseudocylindricals I

A—-Werenskiold I, B-Werenskiold II, C-~Werenskiold III, D-Winkel I, E-Winkel IT

(+lat_1

|

AN

W]
50d28°), F-Sinusoidal, G-Mollweide, H-Foucaut Sinusoidal (+n=0.5), I-

ALY

+proj=winkl +lat_ts

Option lat_ts

Kavraisky V and J-Kavraisky VII .

5.2.2 Winkel 1.

h
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x = A(cos ¢rs + cos ) /2 y=a¢ (5.7)

5.2.3 Winkel II.

+proj=wink2 +lat_1= Fig. [5.2 Ref. [I3} p. 77]
Arithmetic mean of Equirectangular and Mollweide and is not equal-area. Param-
eter lat_1=¢; controls standard parallel and width of flat polar extent.

x = A(cos 8 + cos ¢y1)/2 y = m(sinf + 2¢/m)/4 (5.8)
P(0) = 20 +sin 20 — wsin ¢ P'(0) =2+ 2cos20 (5.9)
By = 0.96 (5.10)

As with Mollweide, P converges slowly as ¢ — 7/2 and 6 — /2.

5.2.4 Urmayev Flat-Polar Sinusoidal Series.

Urmaev and Wagner are equal area but Werenskiold has true scale at the equator.

Name +proj=
Urmayev FPS urmfps +n=
Wagner I (Kavraisky VI) wagl
Werenskiold 11 weren2
Cy Cy
Urmayev FPS 2 ; 3 n
Wagner I (Kavraisky VI) 2 (;)/g §
. 4 .
Werenskiold II 3022 . % g NE @
x = CgAcosyp y = Cyp (5.11)
sinty = C), sin ¢ (5.12)

For Urmayev the latitudes of true scale are determined by the relation:

9—4v3
9 — 4n2y/3

and the ratio of the length of the poles to the equator is determined by v1 — nZ2.

¢ts = arcsin (5.13)

5.2.5 Eckert I.
+proj=eckl Fig. [5.3] Ref. [? , p. 223]

x=24/2/37A(1 —|o|/7) Yy =2+/2/31¢ (5.14)

5.2.6 Eckert II.
+proj=eck2 Fig. [.3] Ref. [IT, p. 223]

z = (2/V6m)A\/4 — 3sin |¢| y:i<\/27r/3(2—\/4—3sin|¢\)) (5.15)

where y assumes sign of ¢.
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5.2.7 Eckert III, Putnins P,, Putnins P}, Wagner VI and
Kavraisky VII.

None of these projections are equal-area and are flat-polar when coefficient A # 0.

Name +proj= figure Ref.
Eckert II1 eck3

Putnins P, putpl

Putnins P} putplp

Wagner VI wag6

Kavraisky VII  kav7 [13][p. 67]

x = CuMA + /1 — B(/7)2)

C, C, A B

Putnins P, 1.89490  0.94745 —1/2 3

Putnins P/ 189490 094745 0 3

Wagner VI 1 1 0 3

Eckert 1T z 4 1 4
g \/7r(4+7r) \/71'(4+7r)

Kavraisky VII  1/3/2 1 0 3

(5.16)
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5.2.8 Eckert IV.

+proj=eck4 Fig. [5.3] Ref. [I7, p. 221]

x=2X1+cosO)/\/7(4+7)
y=2+/m/(4+m)sind
P(6) = 0+ sin 20 + 2sinf — @smﬁ

=6 +sinf(cosf + 2) — MLZMSHIQS

P'(0) =2+ 4cos20 +4cosd
= 1.+ cosf(cosd +2) —sin? 0
By = 0.895168¢ + 0.0218849¢% + 0.00826809¢°

5.2.9 Eckert V.

+proj=eck5 Fig. |5.3] Ref. [I7, p. 220]

x=A1+cos@)/V2+ y=20/V2+m

5.2.10 Wagner II.

+proj=wag2 Fig.|5.4 Ref. 22, p. 184-187], [13] p. 64]

1
r= ) cos y=—1
nmims nmims
2
sin g = my sin(maq¢) n=3
arccos (1.2 cos 60°) V3
ma = m = ————
60° 2sin (mgg

5.2.11 Wagner III.

+proj=wagd Fig. 5.4 Ref: 22, p. 189-190]

x = (mc(c;zts/g)/\ cos(2¢/3) y=q

(5.22)

(5.23)
(5.24)

(5.25)

(5.26)
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Ref. [15][p. 113], [19]

mo =

Fig.

An equal-area projection where the y-axis is a weighted arithmetic mean of the

fouc_s +n

5.2.13 Foucaut Sinusoidal.

+proj
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Cylindrical Equal-Area and the Sinusoidal projections. Parameter n=n is the weight-
ing factor where 0 < n < 1.

x = Acosp/(n+ (1 —n)cos¢) y=nd+ (1 —n)sing (5.35)

5.2.14 Mollweide, Bromley, Wagner IV (Putnins P}) and
Werenskiold III.

Mollweide and Wagner IV are equal area.

Name +proj=  figure Ref.
Mollweide moll [17, p. 220]
Bromley bromley 15 p. 163]
Wagner IV (Putnins P}) wagé 22]
Werenskiold 111 weren3 [13] p. 66]
x = CyAcos(f) (5.36)
y = Cysin(0) (5.37)
P(#) =20 +sin20 — Cpsin ¢ (5.38)
P'(0) =2+ 2cos 26 (5.39)
0y = ¢ (5.40)
Cy Cy Cp
Mollweide 2—\/5 V2 T
" 4
Bromley 1 — T

T
673 5 27v/3 A7 + 33
47 + 3v/3 47 + 33 6

For the Werenskiold III is the same Wagner IV but with the C, and C,, values are
increased by 1.15862.

s

Wagner IV (Putnins P%) 2\/

5.2.15 Holzel.
+proj=holzel Fig. [5.5

r=A 1.161517 (5.41)

441013 * (1 + cos @) otherwise
y=9 (5.42)

— 40928\ 7|
322673 + .369722 l1 <M)|098) ] if || > 1.39634

5.2.16 Hatano.
+proj=hatano [+sym] Fig. [5.5] Ref. [I7, p. 64 and 221]

If the option +syn is selected, the symmetric form of this projection is used, other-
wise the asymmetric form.

x = 0.85\cos 6 ( )

y=Cysinf (5.44)

P(0) =20 +sin20 — Cpsing (5.45)

P'(9) = 2(1 + cos 20) ( )

0o = 2¢ (5.47)
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5.2.17 Craster (Putnins P,).
+proj=crast Fig. [5.5 Ref. [?7 , p. 221]

A pointed pole, equal-area projection with standard parallels at 36°46'.

x = /3/mA[2cos(2¢/3) — 1] y = V/3msin(¢/3)

5.2.18 Putnins P,.
+proj=put?2 Fig. 5.6 Ref. [13] p.66]
x = 1.89490\(cos 0 — 1/2)
y = 1.71848 sin
P(0) = 20 + sin 20 — 2sin 6 — [(47 — 3v/3) /6] sin ¢
=6 +sinf(cosf — 1) — [(47 — 3v/3)/12] sin ¢
P'(0) =2+ 2cos20 +2cos 6
=1+ cosf(cosf — 1) —sin® 0
By = 0.615709¢ + 0.00909953¢> + 0.0046292¢4°

5.2.19 Putnins P3 and P%.

Name +proj= figure Ref.
Putnins P;  putp3 13, p. 69]
Putnins P putp3p 13, p. 69]
z = /2/TA(1 — Ad* /7°) y=/2/7¢

where A is 4 and 2 for respective P53 and Pj.

5.2.20 Putnins P} and Werenskiold I.

This is the flat pole version of Putnins’s P4 or Craster’s Parabolic.

Name +proj= figure Ref.
Putnins Py putp4 13, p. 68]
Werenskiold I weren 13, p. 68]
x = CyAcosf/cos(0/3) y = Cysin(0/3)

sinf = (5v/2/8) sin ¢
where
P Weren. I

C, 2,/0.6/r 1.0
c, 2vV12r ™2

5.2.21 Putnins P; and Px.

(5.48)

(5.49)
(5.50)
(5.51)

(5.52)

(5.53)

(5.54)

Putnins P5 and P§ projections have equally spaced parallels and respectively pointed

Name +proj= figure Ref.
and flat poles.  Putnin§ P;  putp5 [13, p. 69]
Putning P{  putp5p 13, p. 69]

x = 1.01346A(A — B\/1 + 12¢2 /7?) y = 1.01346¢

(5.57)
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5.2.22 Putnins Pg and Py.

Putnin$ Pg and P§ projections are equal-area with respective pointed and flat poles.
Name +proj= figure Ref.

Putnins Pg  putpé 13, p. 69]
Putnins P§y  putp6p 13, p. 69]
= Cu\(D — (14 p*)/?) (5.58)
y=Cyp (5.59)
P(p) = (A~ (L+p")"*)p —In(p+ (1 +p*)"/?) — Bsing (5.60)
P'(p) =A—2y1+p? (5.61)
po=¢ (5.62)
where
Pg P,
Cy 1.01346 0.44329
D 2 3
Cy 0.91910 0.80404
A 4.00000 6.00000
B 2.14714 5.61125

5.2.23 Collignon.
+proj=collg Fig. [5.5| [T, p. 223]

x = (2/v/T)A/1 —sing y=+7(l—4/1—sing) (5.63)

5.2.24 Sine-Tangent Series.

Name +proj= figure  Ref.
Foucaut fouc 5.51 13, p. 70]
Adams Quartic Au- qua_aut 5.9] 13, p. 70]
thalic
McBryde-Thomas mbt_s 5.7| 13 p. 72]
Sine (No. 1)
Kavraisky V kavh 5.2 13, p. 72]
General Sine/Tan. gen_ts [+t|+s] T

+q= +p=

Baar [? ] listed several variations with values of p = ¢ = 10/9, 4/3 and 3/2 for the
sine series and 1, 4/3, 3/2 and 3 for the tangent series.
Sine seriesi equations:

z = (g/p)Acos ¢/ cos(¢/q) y = psin(¢/q) (5.64)
Tangent Seriesi equations:
@ = (q/p)A cos ¢ cos*(¢/q) y = ptan(¢/q) (5.65)
q P Sine Tangent
2 VT Foucaut
2 2 Quartic Authalic
1.36509 1.48875  McBryde-Thomas

35° arccos(0.9) q/0.9 Kavraisky V
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Figure 5.7: General pseudocylindricals IT1
A-McBryde P3, B-McBryde Q3, C-McBryde S2, D-McBryde S3, E-McBryde-

Thomas Flat-Polar Parabolic, H-McBryde-Thomas Flat-Polar Quartic, -McBryde-

Thomas Sine (No. 1), F-McBryde-Thomas Flat-Poler Sine (No. 2) G-McBride-
Thomas Flat-Polar Sinusoidal and J-Robinson .
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5.2.25 McBryde-Thomas Flat-Polar Parabolic.

+proj=mbtfpp Fig.

x = /6/7/3\[1 + 2cos 8/ cos(0/3)]
y = 31/6/7sin(0/3)
P(6) = 1.125sin(8/3) — sin®(0/3) — 0.4375sin ¢
P'(0) = [0.375 — sin?(0/3)] cos(6/3)
bo =9

5.2.26 McBryde-Thomas Flat-Polar Sine (No. 1).
+proj=mbtfps Fig.

x = 0.22248\[1 4 3 cos 0/ cos(6/1.36509)]
y = 1.44492sin(6,/1.36509)
P(6) = 0.45503 sin(0/1.36509) + sin 0 — 1.41546 sin ¢

P'(0) = ?gg?gg cos(0/1.36509) + cos 0
6=0

5.66
5.67
5.68

5.69
5.70

,_\,_\,_\AA
N o — —

At the moment, there is a discrepancy between formulary and claim that 80° parallel

length is half the length of the equator.

5.2.27 McBryde-Thomas Flat-Polar Quartic.
+proj=mbtfpq Fig.

= A1+ 2cosf/ cos(0/2))[3v2 + 6]~1/2
y = (2V3sin(6/2)[2 + V2] /2
P(6) =sin(0/2) +sinf — (14 v2/2) sin ¢
P'(0) = (1/2) cos(8/2) + cos O
0=2¢

5.2.28 Boggs Eumorphic.
+proj=boggs Fig. [5.5

x = 2.00276A(sec ¢ + 1.11072 sec §) y = 0.49931(¢ + V2sin 6)
P(0) = 20 + sin 20 — wsin ¢ P'(0) =2+ 2cos 26
0=¢
5.2.29 Nell.

+proj=nell Fig. [5.8 Ref. [I5][p. 115]
x = A1+ cosf)/2 y
P(0) =0 +sinf — 2sin¢ P'(9) =
6, = 1.00371¢ — 0.0935382¢% — 0.011412¢°

0
1+ cos@

(5.81)
(5.82)
(5.83)

(5.84)
(5.85)
(5.86)
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Nell-Hammer.

+proj=nell h [+n

5.2.30
The equal-area Nell-Hammer is a specialized case of the more generalized arithmetic

mean of tha y-axis or parallels of the Cylindical Equal-Area and the Sinusoidal

A-Snyder Minimum Error. B-Loximuthal (+1at_1

Nell, I-Maurer and J-Mayr—Tobler.

Flat-Polar Sinusoidal (+n
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projection [19):

x = (a+bcosP)A (5.87)
2(¢—tan§) fora=b=1/2
. \/aQ—thang a2 > b2
Y=99¢ a)Jz_p oMoy e (5.88)
b b a2 ) h(bfa)tang FB s a2
———arctanh———=== i a
V- VP -

where a and b are the respective weights of the cylindrical equal-area and sinuisoidal
projections and where a +b = 1.

The optional n parameter corresponds to a and 0 < n < 1. When n is not
specified then n «— 0.5 (true Nell-Hammer).

5.2.31 Robinson.

+proj=robin Fig. Ref. [11]
Common for global thematic maps in recent atlases.

x = 0.84872X (|¢]) y = 1.3523Y(|¢|) vy assumes sign of ¢ (5.89)
where the coefficients of X and Y are determined from the following table:

¢° Y X ¢° Y X
0 0.0000 1.0000 || 50 0.6176 0.8679
5 0.0620 0.9986 || 55 0.6769  0.8350
10 0.1240 0.9954 || 60 0.7346  0.7986
15 0.1860 0.9900 || 65 0.7903  0.7597
20 0.2480 0.9822 | 70 0.8435 0.7186
25 0.3100 0.9730 || 75 0.8936  0.6732
30 0.3720 0.9600 || 80 0.9394 0.6213
35 04340 09427 || 85 0.9761 0.5722
40 0.4968 0.9216 | 90  1.0000  0.5322
45 0.5571  0.8962

Robinson did not define how intermediate values were to be interpolated between
the 5° intervals. The proj system uses a set of bicubic splines determined for each
X-Y set with zero second derivatives at the poles. GCTP uses Stirling’s interpolation
with second differences.

5.2.32 Denoyer.
+proj=denoy Fig. [5.5
x = Acos[(0.95 — \/12 + A*/600)¢] y=¢ (5.90)

5.2.33 Fahey.

+proj=fahey Fig. [5.5

x = Acos35°4/1 — tan?(¢/2) y = (14 cos35°) tan(¢/2) (5.91)
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Figure 5.9: General pseudocylindricals V
A—Baker Dinomic, B-Times, C—Tobler G1 and D—Quartic Authalic.

5.2.34 Ginsburg VIII.

+proj=gins8 Fig. [5.10] [13][p. 78]

= A1 — 0.1623884%)(0.87 — 0.000952426)\1) 3y = o(1 +¢>/12)  (5.92)

5.2.35 Loximuthal.

+proj=loxim +lat_1= Fig.
All straight lines radiating from the point where lat_1=¢; intersects the central
meridian are loxodromes (rhumb lines) and scale along the loxodomes is true.

o= JM@—d1)/[Intan(m/4+ ¢/2) —Intan(w/4+ ¢1/2)] ¢ # ¢ G
A Cos ¢ ¢ =1 Y !
(5.93)
5.2.36 Urmayev V Series.
+proj=urm5 Fig. 5.8 Ref. [13, p. 77] [15][213]
x = mAcosf (5.94)
y = 0(1+ ¢q6?/3)/(mn) (5.95)
sinf = nsin ¢ (5.96)

where m = 2v/3/3, n = 0.8 and ¢ = 0.414524 are default values that have been
employed in some atlases.
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5.2.37 Goode Homolosine, McBryde Q3 and McBride S2.

Name +proj= figure  Ref.
Goode Homolosine  goode

McBryde P3 psfig:mb_P3

McBryde Q3 psfig:mb_Q3

McBryde S2 psfig:mb_S2

Pseudocylindrical can be composited where different projections are used in different
latitude zones. In the cases presented here there are only two regions: one covering
the central or equitorial latitudes and another covering the polar regions. At the
latitude where they join together, the horizontal scale must match and a shift value
is normally subtracted from the computed y-value of the polar projection.

Name Equitorial Polar ¢ join y offset
Goode Homolo-  Sinusoidal Mollweide 40°44’ 0.05280
sine Sec. @ Sec

McBryde P3 Craster McBryde-Thomas — 49°20'21.8”  0.035509

Parabolic Flat-Polar

Sec. Parabolic

Sec. 5.2.25
McBryde Q3 Quartic McBryde-Thomas 52°9' 0.042686
Authalic Flat-Polar
Sec.[5.2.24  Quartic
Sec.
McBryde S2 Sinusoidal Eckert VI 49°16' 0.084398
Sec. @

5.2.38 Equidistant Mollweide
+proj=eqmoll Fig. [5.5
= % |72 — 4¢2] y=2¢ (5.97)
5.2.39 McBryde S3.

+proj=mb_S3  Fig. [5.7] Ref.
If |¢| < 55°51" then

T = Acos ¢ y=a¢ (5.98)
else

x = %(0.5 + cosf) (5.99)
y = C F 0.069065 (5.100)
P(9) = g +sinf— (1— %) sin ¢ (5.101)
P'(9) = % + cosf (5.102)
b = ¢ (5.103)

6 \2
= .104
¢ (4 + 7r> (5.104)
(5.105)

where the last constant takes the opposite sign of ¢.
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Figure 5.10: General pseudocylindricals VI
A—Oxford, B-Ginsburg VIII and C-Semiconformal.

5.2.40 Semiconformal.
+proj=near_con (Fig. [5.10
{ sign of ¢ 0.99989 if |¢| > 1.5564

sin ¢ otherwise
1 1
f=—1In St
27 1—p
x = Acosf
y =msinf

5.2.41 Erdi-Krausz.

+proj=erdi krusz Fig. |5.8) Ref. [13] p. 73-74]
If |¢| < 7/3 then

x = 0.96042) cos 0’ y = 1.301526"
sin@’ = 0.8sin ¢

otherwise

x =1.07023\ cos 0 y = 1.68111sin 0 F 0.28549

(5.106)

(5.107)

(5.108)
(5.109)

(5.110)
(5.111)

(5.112)
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where sign is opposite that of 6

P(6) =20 +sin20 — wsin ¢

Oy =09

5.2.42 Snyder Minimum Error.

+proj=smin_err Fig. |5.8

ayp = 1.27326
az = —.04222
as = —.0293
aly = —0.12666
ay = —.1465
Acos ¢
T o+ (0 + )
y = d(a1 + ¢*(as + as¢”))

5.2.43 Maurer.

+proj=maurer Fig. |5.8

13| p. 69]

e

5.2.44 Canters.

™

Canters’ four low-error pseudocylindrical projections.

Name

+proj=

P'(0) =2+ 2cos26

(5.113)
(5.114)

(5.122)

General optimization

fc_gen

Pole length half the lenght of the equator fc_pe

Correct axis ratio fc_ar
Pointed pole, correct axis ratio fc_pp
with the general form:
flat polar

x = Mco + cod® + C4¢4) {

Y=o+ cs¢° + cko®

where the coefficients are:

X cos¢ pointed pole

(5.123)

(5.124)
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Figure 5.11: Canters’ pseudocylindrical series
A—Canters’ General optimization, B—Pole length half the lenght of the equator. C—
Pole length half the lenght of the equator and D—Pointed pole, correct axis ratio.

general optimization

co = 0.7920 ¢y = 1.0304
co = —0.0978 cy = 0.0127
cqe = 0.0059 c5 = —0.0250
pole length half the lenght of the equator
co = 0.7879 ¢y = 1.0370
= —0.0238 ¢y = —0.0059
cq = —0.0551 ¢t = -0.0147
correct axis ratio and
co = 0.8378 ¢y = 1.0150
co = —0.1053 cy = 0.0207
cg = —0.0011 ¢t = —0.0375
pointed pole, correct axis ratio
co = 0.8333 ¢y = 1.0114
ca = 0.3385 cs = 0.0243
cqg = 0.0942 c5 = —0.0391
5.2.45 Baranyi I-VII.

Name proj= figure

Baranyi IV (Snyder) baranyi4

Baranyi I brny_1 +vopt all on fig. |5.12

Baranyi I1 brny_ 2 +vopt

Baranyi IIT brny_3

Baranyi IV brny_4

Baranyi V brny_5

Baranyi VI brny_6

Baranyi VII

brny_7
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Figure 5.12: Baranyi pseudocylindrical series

(5.125)

B(1. + ¢2(.112579 + |¢|(—.107505 + |¢|.0273759)))

ilog(l. +0.11679 * |A])

A-Baranyi I, B-II, C-III, D-IV E-V F-VI and G-VIL.
y
f

Baranyi I'V.
that is derived from unpublished BASIC procedure written by Snyder and forwarded

The following is a version of projection IV of the Baranyi set of seven projections [5]
by Anderson [4]:

where f takes the sign of A

0.31255

(5.126)

when |¢| < 1.36258
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Baranyi projections.

The following version of Baranyi’s seven projections attempt to stay close to Baranyi’s
original description [5] with some interpretations from a FORTRAN procedure by
Voxland [9].

The projections follow three basic steps:

e convert both latitude and longitude to intermediate units (x,,y,) by means
of tabular description of the converted coordinates at 10° intervals,

e determine the length of the parallel (x;) for the intermediate latitude at the
limiting longitude (180°) and

e scale the intermediate longitude by the ratio of the meridian length at the
intermediate latitude and equatorial length.

Conversion if longitude and latitude to intermediate units is performed by first
changing radians to degrees and then interpolating intermediate values from the
from tables and of intermediates values at each 10%rc of geographic coor-
dinate. Because projections I and II have regular spacing or increments of tabular
values, Voxland used a second degree determination for intermediate latitude:

Yp = a1|@a| + a20] (5.127)
= 0.975 Barany? I a4y — 0.0025 Barany? I (5.128)
0.95 Baranyi II 0.005 Baranyi II

The results from the above equations for y, will differ from the linear interpolation
and may be selected by using the +vopt option. Although this solution is elegant
it does not match the general nature of Baranyi’s definition of the projection.

The previously determined intermediate longitude represent the value at the
equator and must be scaled by the ratio of the length of the parallel at the interme-
diate latitude and length of the equator. Length of the parallels are determined by
two or three segments that are either circular arcs or straight lines. Each segment
joins in a smooth manner by the curves intersecting at points of tangency.

- Zp X +4/R?—(y, +Y)? circular arc (5.129)
p[180] (yp —A)/B straight line segment
(5.130)

where the coefficients are determined from table Applicable arc-line segment is
determined by ¥, < y,-intersect column value. The empty last entry in this column
is assumed to be infinite and thus selected if previous tests fail. Factor x,[180] is
the length of the equator from the last column of table

The intermediate coordinates are finally scaled to x,(10°) and y,(10°):

™ ™
-t =y 5.131
T80 Y= =180 (5.131)

where the sign of x and y are taken from A and ¢ respectively.
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0° ]10°] ]20°| |30°| |40°| |50°| |60°| |70°|  [80°|  ]90°]
I 0.0 10.0 20.5 315 43.0 550 675 80.5 94.0 108.0
IIT 0.0 10.0 21.0 33.0 46.0 60.0 750 91.0 108.0 126.0
I | 0.0 12.0 24.0 36.0 490 620 750 860 97.0 108.0
IV 0.0 12.0 240 36.0 490 620 750 870 99.0 111.0
vV (0.0 100 20.5 31.5 440 580 705 81.5 92.0 102.0
VI | 0.0 100 20.5 31.5 435 565 705 8.0 100.0 115.5
VII | 0.0 12.0 24.0 355 470 585 695 805 905 995
Table 5.1: Intermediate parameter y, value for each 10 degrees of latitude.
0° |10°] ]20°] [30°] ]40°] [50°] [60°] |70°] [80°| |90°]
[100°] |110°] [120°] |130°] |140°] |150°| |160°| |170°| |180°
I 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0
100.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0
II 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0
100.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0
11 0.0 12.0 24.0 350 46.0 570 680 78.0 88.0 98.0
108.0 118.0 128.0 138.0 148.0 157.0 166.0 175.0 184.0
I\Y 0.0 12.0 24.0 350 46.0 570 680 78.0 88.0 98.0
108.0 118.0 128.0 138.0 148.0 157.0 166.0 175.0 184.0
\% 0.0 105 21.0 315 420 525 625 725 825 925
102.5 112.5 122.5 132.5 142.5 151.0 159.5 168.0 176.5
VI 0.0 105 21.0 315 420 525 625 725 825 925
102.5 112.5 122.5 132.5 142.5 151.5 160.5 169.5 178.5
VII 0.0 12.0 24.0 355 470 580 69.0 79.5 90.0 100.0
110.0 120.0 130.0 140.0 150.0 159.0 168.0 176.0 184.0

Table 5.2: Intermediate parameter x, value for each 10 degrees of longitude.

Circular Arc [Line] Arc-Line

No. X Y[A4] R[B] Yy, Intersect

I 80.0 0.0 100.0 81.241411756
0.0 111.465034594  237.202237362

1I 75.0 0.0 105.0 89.732937686
0.0 123.428571429  249.428571429

11T 94.0 0.0 90.0 78.300539425
0.0 165.869652378  280.653459397

1A 84.0 0.0 100.0 94.323113828
0.0 315.227272727  426.227272727

A\ 86.5 0.0 90.0 89.129742863

[102.995921508] [-0.140082858] 101.013708578
0.0 0.0 102.0

VI 83.5 0.0 95.0 92.807743792
[115.5]  [0.218634245]

VII | 94.0 0.0 90.0 87.968257449
0.0 460.302631579  559.802631579

Table 5.3: Table of limiting curve constants and y, range limit.
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5.2.46 Oxford and Times Atlas.
Name +proj= figure Ref.

Oxford Atlas
Modified Gall oxford [5.10
Times Atlas times

t = tan (?) (5.132)
Y= (1 + ?) t (5.133)
1 —0.04¢*

_— f Atl
- NG Oxford Atlas (5.134)

0.74v/1 — 0.5t2 Times Atlas

5.2.47 Baker Dinomic.

+proj=baker Fig.[5.9 Ref. [I5][p. 271]
When |¢| < 7/4 then projection is basic Mercator

Intan (Z + 2) or
—In| ———
2 1 —sing
otherwise
x:)\cosqﬁ(2\f27csc¢) y==+ [lntan@+2\f2(|¢| - g)] (5.136)
where the above y value takes the sign of ¢.
5.2.48 Fourtier II.
+proj=four2 Fig.
A very early pseudocylindrical.
~ cos¢ " sin g (5.137)
—_ - —_= —— SIn .
x ﬁcos Y 5 S

5.2.49 Mayr-Tobler.

+proj=mayr [+n=] Fig. [5.8 Ref: [19], [15, p. 220]
An equal-area projection first described by Mayr and later by Tobler. The pro-
jection is based upon a weighted geometric mean of the x-axis or meridians of the
Cylindical Equal-Area and Sinusoidal projections:

¢
x = Acos' " bo y = / cos" ¢ do (5.138)
0

where 0 < n < 1 and is the weight factor of the cylindrical projection. The Mayr
projection is the special case (default) where n « 0.5 when not specified.
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5.2.50 Tobler G1

+proj=tob_gl [+n=] Fig. [5.9] Ref. [19]
For this equal-area projection the y-axis is a weighted geometric mean of the Cylin-
drical Equal-Area and the Sinusoidal projections.

B @’ sin® ¢
T = Acos¢asin¢ ayrp— (5.139)
y = ¢%sin® ¢ (5.140)
a+b=1 (5.141)

Option n is equivalent to @ and 0 < n < 1 and is the weight for the cylindrical
projection. If the n option is not specified, then a < 0.5.

5.3 Pseudocylindrical Projections for the Ellipsoid.

5.3.1 Sinusoidal Projection

The elliptical version of the Sinusoidal projection is one of the simlplest elliptical
computations. Spacing of the parallels is based upon the meridianal distance M (¢)
as defined in section The parallel lengths are determined by their radii defined
in section [3.7.3] Thus the forward equations are simply:

x = axm(e) y=M(¢) (5.142)

The inverse projection values are determined by:

¢ =M"(y) A= (5.143)



Chapter 6

Conic Projections

Forward Conic Formulae.

The basic forward formulae for all simple conics are expressed by:

x = psinf (6.1)
= pg— pcost

where 6§ = n\. Factor p is the distance of the projected point from the apex of the
cone and n is the cone constant. The factor pg is determined by evaluating p at ¢q
(+1at_0=) and establishes the y-axis origin. The x-axis origin is at Ao (+lon_0=).

Both p and n are functions that determine the characteristics of each conic
projection, as shown in Table[6.1] and both usually controlled by two user specified
parallels: ¢; and ¢y (+lat_1= and +lat_2=). In some cases, one parallel may be
specified, ¢1, specified (in Lambert Equal Area and ¢; = ¢2 cases) and in the case
of the Lambert Conformal Conic, a scale factor, ko (+k_0=) may be specified. All
cases where o, o or n would evaluate to 0 or n evaluates to 1 are not allowed.

In addition to the formulae for the spherical earth in Table several conics
are available for the ellipsoidal earth as follows.

Albers Equal Area:

p=+vC—ng/n
o {0 e
sin ¢ 1= @2

C = m% + ngy
cos /(1 — €2 sin® ¢)1/?

51 1 1 —esing
12 sin ¢ _1
4= e)[leQSingb 2€—|—n 1+ esing

k=1/h = /C —ng/m=np/m

m

For the case of Lambert Equal Area, subsitute 7/2 for ¢» in the preceeding formulae.
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Table 6.1: Spherical equations for conic projections.
Name p= n =

e $2C08 Q1 — P1COSPo COS ¢1 — COS Py
Equidistant <08 1 — 03 s 1) i y——

1 = 92 cot g1+ ¢1 — ¢ sin ¢
Murdoch T (cotosind)/d+ 0 — o sino
Murdoch II cot 0v/cosd + tan(o — ¢) sin 0/ cos &
Murdock IIT dcotdcoto+o—¢ (sin o sin 6 tan §) /62
Euler 0/2cot(d/2)coto + o — ¢ (sinosind)/é

1n (€08 01
tan” (w/4 + ¢1/2) (cos b2
Lambert Conformal coSs ¢ ntan™ (/4 + 6/2) - tan(r /4 + 03 /2)
tan(mw/4 + ¢1/2)
_ tan™ (7 /4 + ¢1)/2

1= @2 ko COS¢1ntan”(7r/4+ 3/2) sin ¢y
Albers Equal Area [cos? @1 + 2n(sin ¢y — sin ¢)]/2/n (sin ¢y + sin ¢2)/2
Lambert Equal Area [2(1 — sin ¢)/n]'/? (1 +singy)/2
Perspective cos d[cot o — tan(¢ — o)] sino

: sino |, cosd 1/2 :
Tissot { {cosé + Sho — 2sin d)} /n} sino
Vitkovsky I same as Murdoch III (tandsino)/d

where 0 = (¢2 + ¢1)/2 and 6 = (¢2 — ¢1)/2.
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Lambert Conformal:

p = koFtn
Inmy — Inmeo

n = { lntl—lntg ¢17é¢2
sin ¢y 1 = @2

m = cos /(1 — e®sin? ¢)'/?

o e/2
t = tan(r/4— 6/2)/ Eizz(ﬂ

B 1 —sing 1+esing\° 1/2
N {(1—!—8111@5) <1—esin¢) ]
F = my/(nt?)
h=k = konp/m

v = nA
Equidistant:
p=G—M)
o = {06 = MGo0) 1 £
Sil’l ¢1 (bl = ¢2
m = cos /(1 — e?sin? ¢)'/?
G = ml/n+M(¢1)
h=1
k = np/m

Inverse Conic Formulae.

When n < 0, reverse the sign of x, y, and ¢y and then evaluate: First compute
y' = po — y and then

p= (x2 + y/2)1/2.
If n < 0, reverse sign of z, ¥y’ and p and compute

0 = atan2(z,y’)

Compute A = §/n and, in the spherical case, determine ¢ from the p equations in
Table Solutions for ¢ for the elliptical earth are as follows:
Albers Equal Area:
Compute ¢ = (C' — p?>n?)/n and initial value of ¢ = sin"'(¢/2) and iterate ¢ =
¢ + A¢ until |[A¢| less than acceptable tolerance and where:
Ap = (1 — e®sin?)1/? g sin ¢ 1 1—esing
N 2 cos ¢ 1+ esing

1—e? 1—e€?sin®¢p 2e

Lambert Conformal:
Compute t = (p/F)"/™ and ¢ = 7/2 — tan~—' t and substitute ¢ into the right hand

side of
. 1 —esing e/2
1+ esing
Repeat substition of ¢ into right side until absolute difference between last and
current value of ¢ less than tolerance.

¢=m/2—2tan"!
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Equidistant:
¢=M"(G —p).

6.0.2 Bonne.

+proj=bonne [+lat_1=] 77 [I4] p. 140]
The Werner and Sylvano are special cases of the Bonne where Werner specified a
value of ¢; = 90°. Sylvano selected ¢y = 47° and limited the geographic range to
within +£160° and 40°S > ¢ < 80°N for a world map centered at 60°FE.
For forward of the sphere:

p=cotdr+é1—¢ (6.3)
ol (6.4)
p
x=psinE (6.5)
y=cotgp, — pcos & (6.6)
and for the ellipsoid:
m = cos ¢/(1 — e?sin® ¢)'/2 (6.7)
p=m1/sin¢1 + M(¢1) — M(¢) (6.8)
E=m\/p (6.9)
x = psin F (6.10)
my
= — E 11
V= ™ pcos (6.11)
For the inverse of the sphere:
2 2y211/2
p == [2° + (cot ¢1 — y*)?] (6.12)
¢=cotr+¢1—p (6.13)
__P _
A= o (batanQ[:I:x, +(cot ¢1 — y)] (6.14)
and for the ellipsoid:
2 : 24271/2
p ==+ [2* + (m1/sind1 — y*)?] (6.15)
¢ =M""(m1/sin g1 + M(¢1) — p) (6.16)
A= ﬁatanQ[j:x, +(my/sin ¢ — y)] (6.17)
m

In all cases, £+ take sign of ¢;.

6.0.3 Bipolar Oblique Conic Conformal.

Developed as a low-error conformal map of both North and South America, it
consists of two translated, spherical form Lambert Conformal Conic projections (A
and B) with points to the left of a geodesic from B to A determined by projection
A and those to the right by projection B. There is a small and varying discontinuity
along this geodesic, but it is negligible within the range of interest and at the small
scales normally used. Because the formulae for this projection are presented by
[14], they are used here rather than using a combination of the general oblique
procedures. Only the spherical form is used and both +lon_0 and +lat_0 are
ignored.
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The following are defining constants for the location of the poles of each projec-
tion:

¢pa = 20° S = —0.349065850398866
Aa = 110° W = —1.91986217719376
¢p = 45° N = 0.785398163397448
zap = 104° = 1.81514242207410

and each projection has the equivalent standard parallels of ¢; = 31° and ¢o = 73°.
These factors determine the following constants:

AB

coSzap — sing 4 sin ¢p
COS 4 COSPp )
= —0.348949767262507(—19059/36.0561)
= ln (s%ngbl) In (tan(tbl/?))
sin ¢g tan(¢pa/2)
= 0.630558448812747
Fy = sin ¢y /[ntan"(¢1/2)]
= 1.83375966397205
ko = 2/[1 4+ nFy tan™ 26°/ sin 52°]
= 1.03462163714794
F = kyFy
= 1.89724742567461
Azap = arccos{[cos ¢4 singp —
singa cos pp cos(Ap + Aa)]/sinzap}
= 0.816500436746864(46°46'55.30437")
Azpa = arccos{[cos ¢ppsinps —
singp cos pa cos(Ap + Aa)]/sinzap}
= 1.82261843856186(104°2542.03909")
T = tan"(¢1/2) + tan™(¢2/2)
= 1.27246578267089
pe = FT/2=1.20709121521569
ze = 2tan”H(T/2)V/™
= 0.908249725391265(52°2'19.95363")

Aa -+ arccos (

Forward projection:

First determine which conic to use by computing

Az = atan2[sin(Ap — A),

cos ¢ tan ¢ — sin ¢ cos(Ap — A)].

If Az > Azp A, then conic A is to be used otherwise conic B. Next compute distance
from point to conic pole from:

z = arccos[sin ¢4 sin @ + cos ¢4 cos ¢ cos(A + A4)]

or
z = arccos[sin ¢p sin ¢ + sin ¢ cos ¢ cos(Ag — )]
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for respective A and B conics and in the case of the A conic recompute the azimuth
from:

Az = atan2[(sin(A + A4),
cos P4 tan ¢ — sin ¢4 cos(A + Aa)).
Next compute:
p = Ftan"(z/2)
k = pn/sinz
a = arccos{[tan"(z/2) + tan"(zap — 2)]/T'}

Determine 6 by subtract Az from Aap or Aga for respective A or B conic and then
compute

p = p/ cos[a — 6].
If p > a, then p = —p. Now compute local cartesian system:

/

psinf

/

Fpcosb £ pe.

using upper or lower sign for respective A or B conic. Finally, rotate into appropriate
position:

x = —a' cos Az, — 1 sin Az,

y = —y' cos Az, + x’ sin Az,

Inverse projection:

First, rotate cartesian into local system:

"= —wcos Az, + ysin Az,

y = —xsin Az, — ycos Az,

If 2/ < 0, the change sign of 3'. Next compute:

p = [2%+ (pe +y)]"/?
4, = aten2(a’, pe +1/)

Set p = p’ and compute

z = 2tan"!(p/F)'/?
arccos{[tan"(z/2) + tan™(zap — 2)|}

(07

If Az < «, set p = p’(cos @ — Az) and repeat previous two equations until difference
between previous and current p less than desired tolerance. If ' < 0, set ¢. = ¢4
and A, = Azap, otherwise ¢, = ¢p and A, = Azpa. Finally calculate:

Az = A, — Az/n
¢ = arcsin(sin ¢. cos z + cos @, sin z cos Az

A = A, — atan2(sin Az, cos ¢,/ tan z — sin ¢, cos z)
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6.0.4 (American) Polyconic.

Forward:
If ¢ =0, then
T =\
= —my
otherwise
E = n)\sing

x = cot¢psin K
y =m—mo+ncotp(l —cosE)
For the sphere, N = 1 and M = ¢, and for the ellipsoid, n = (1 —e?sin® $)~'/? and
m = M(¢).
Inverse:
If y = —my, then

¢:
A==z

otherwise a Newton-Raphson approximation must be used which will not converge
when |A| > 7/2. Firsts compute:

A=mg+y
B = 2% + A?
Set ¢ = A and iterate the following. For the sphere:

A(ptang + 1) — ¢ — [(¢* + B) tan ¢]/2

Ap = (6 — A)/tand — 1

or the ellipsoid:

C = (1-e?sin?¢)?tan ¢

m = M(¢)
m' = (1 —e?)(1 — e%sin? ¢)~%/2
A¢ = [A(Cm+1) —m — (M? + B)C/2]/

[
[e? sin 2¢(m? + B — 24Am) /4C +
(A—m)(Cm’ —2/sin2¢) —m'|

For both: ¢ = ¢ — A¢ and recompute until A¢ less than tolerance. Lastly, compute
A =sin~ ! (zC)/ sin ¢.

IMW Polyconic.

A modified polyconic projection adopted in 1909 for the 1:1,000,000-scale Interna-
tional Map of the World where each panel spans 4° of latitude and with longitude
extent determined by:

Latitude Zones Longitude Range )\
60°S to 60°N 6° 2°
60° to 76° 12° 4°
76° to 84° 24° 8°
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The factor A\ is a standard meridian on either side of the map’s central meridian
that has unity meridianal scale factor (k). Parallel scale factor (k) is 1. along the
map bounds. Longitude boundaries of standard IMW sheets are unknown to the
author. Polar Stereographic was apparently used for the polar regions but confusing
extent specifications make scale factor speculative.

Circa 1962, the Lambert Conformal Conic replaced this projection. For this
system, the conic standard parallels are 15 and 4% of the extent of the 4° latitude
zones (standard parallels obtained by adding by +48 respectively to lower and
upper bounds) and the zones extend from 80°S to 84°N. The polar Stereographic
projection is used for the remaining regions with scale factor adjusted to match the
abutting edge of either IMW polyconic or Lambert Conformal Conic zones.

Usage of the IMW Polyconic requires specification of the map’s limiting par-
allels, ¢1 and ¢o, with lat_1 and lat_2. The projection may not symetrically
span the equator (¢; = —¢2). The standard merdians (from \;) are automatically
determined from the mean of the standard parallels, but this my be overriden by
specifying lon_1. Cartesian origin is at the central meridian, lon_0, and the most
southerly bounding parallel.

Initializing computations for both forward and inverse are as follows. For n =1,
2, compute

T, = R,sinF, A1
Y1 = Rl(lfCOSFl) 0
T2 = RQ(].—COSFQ) 0

where

R, = cot ¢, /(1 — e*sin? p,,) /2
/\1 sin ¢n

e
I

Then compute

Yo = {M(¢2) — M(¢1)]* — (w2 — 21)?}* + 1
Co =y —T

D = M(¢2) — M(¢1)

P = [M(¢2)y1 — M(¢1)y2]/D

Q= (y2—y1)/D
P’ = [M(¢2)x1 — M(¢1)x2]/D
Q' = (z2—x1)/D

Forward:
Compute: this is incomplete!!! If ¢ = 0, then
T = A
y=20
Otherwise, compute
v = P+ QM(9)
Yo = P+ QM(9)
R = cot /(1 — e?sin? ¢)1/?
C = yo— R+ (R*—22)'/?

where £ takes the same sign as ¢. Next, compute
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$2 #0 $2 =0
xp =  Rgsin(Asin¢s) A
yp = Co+ Ro[l —cos(Asing)] Cy
and
$1#0 $1=0
T.= Rpsin(Asin¢) A
Ye= Ri[l —cos(Asingy)] 0
Finally,
D = (l‘b - xc)/(yb - yc)
B =xz.4+D(C+R-y.)
v = {BF D[R*(1+ D?) - B}"/?}/(1+ D?)

y=C+RTF (R?— %)/

where F takes sign opposite of ¢.

Inverse:

Using initial estimates of

¢ = ¢2
A =ux/cosd

compute (x,y;) obtained from (z,y) determined by the forward equations. Deter-
mine adjusted (¢, A) from:

¢ = [(¢— 1)y —ve)/ (Yt — ye)| + b1
A= Ax/xy

Using new estimates, repeat process until change in each axis reaches tolerance.

6.0.5 Rectangular Polyconic.
If gbts = 0, then

A=)\/2
otherwise
A = tan[(Asin ¢)/2] sin ¢ys.
If ¢ =0, then
x=2A
= —¢o.
otherwise
p = cot ¢
6 = 2tan"'(Asin¢)
x = psinf

y = ¢— ¢o+ p(l—cosb).
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6.0.6 Modified Polyconic.

For ¢ =0

= 25,f()

y=20
otherwise

25, f (A)V S/ Sn
e [f(A) sin (bVSm/Sn—l]z
y = SmuM() + xf(N)sin gV S/

where

V = cos ¢/ (1 — e?sin? ¢)1/2
When ¢y = 0, then
FA) =moA/(250)

otherwise
_ tan[(no sin ggA) /(25,)]

sin ¢q ‘/()Sm/s"' -1
In the case of ¢pg = 0, typically S,, =S, = ng where ng is the scale factor along
the equator. Where ¢y # 0, K also needs to be specified.

)

6.0.7 Ginzburg Polyconics.

These polyconics are based upon polynomials in ¢ defining the cartesian coordinates
at the central meridian (z,,,y,) and at the A = 180° meridian (z;,y;):

Ty =

0
2n—1
Ym = E Con—19°"
n=1
2
xr, = E a2n¢n
n—

)
yo= Zb2n—1¢2n71
n=1

where the coefficents are:

c1 1.0 1.0 1.0 1.0

c3 0.045 0.0 0.0 0.0

ao 57/6 2.8284 2.5838 2.6516
az —0.62636 —1.6988 —0.83584 —0.76534
as  —0.0344 0.75432 0.17037 0.19123
ae 0.0 —0.18071 —0.038097  —0.047094
b 1.3493 1.76003 1.54331 1.36289
bs  —0.05524 —0.38914 —0.41143 —0.13965
bs 0.0 0.042555 0.082742 0.031762

To determine the radius of the polyconic arc, the radius of a circle circumscribing
the triangle formed by the A = £180° points and the central merdian:

p=(af +y2)/(2x1ys)

where ys = |yi — ym| and where the sign of p is taken from ¢. The cartesian
coordinates are determined by:

x = psinfA
Y
where 0 = tan"(z/(p — y))/7.

pcos O+ ypm,
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6.0.8 Kiovak Oblique Confomal Conic Projection

Projection of geographic coordinates by the oblique conformal conic projection is
three step process. First, conversion of the ellipsoid coordinates (¢,)\) to coordinates
on a conformal sphere (¢.,\.) which is followed by translation of the spherical
coordinates (¢’,\'). Finally, these coordinates are projected to planar coodinates
with the tangential form of the conformal conic projection. The following equations
are presented in their most general form and include options that may be disregarded
in the final application.

Forward projection

In the following conversion from ellipsoid to conformal sphere coodinates the values
of the projection origin on the ellipsoid, ¢o-Ag, must be provided. R, is the radius of
the sphere computed as the geometric mean of the meridinal and parallel ellipsoid
radii.

1 —esing Ce/2
- c ek _
¢. = 2arctan | K tan" (n/4+ ¢/2) <1+esin¢> 1 /2 (6.18)
Ae = CA=Xo (6.19)
1—e?
R, = a—Y""° 6.20
al — e2sin? ¢g (6:20)
e2costdg
= 14+ —— 21
C + o2 (6.21)
. (singg
= .22
X arcsin ( 8 ) (6.22)

— esin Ce/2
K = tan(y/2+7/4)/ [tanc(q§0/2+7r/4) (M) ] (6.23)

The following is general spherical translation but in this application only the shift
of the latitude of the pole, «, is used. Angles 8 and A\, are ignored (set to 0).

¢ = arcsin(sinasin ¢, — cos a cos @, cos(Ae — Aeg)) (6.24)
N = arcsin(cos ¢, sin(A. — Aeo)/ cos¢’) + 3 (6.25)
a = T/2— ¢ (6.26)

where ¢; is the latitude of the new sphere on the old sphere.

The translated spherical coordinates are now projected to the tangent cone by
the general spherical conformal conic projection:

= sing; ( )
F = cos¢ytan™(w/44 ¢1/2)/n (6.28)
p = koR.F/tan"(m/4+¢'/2) (6.29)
po = koR.F/tan™ (/4 + ¢1/2) (6.30)
(6.31)
(6.32)
(6.33)

3
|

= n =N
r = psinf

= po—pcost
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Inverse projection

For the inverse case, coordinates on the conformal sphere are first found from:

koR.F\ "
¢ = 2arctan( 0 pc ) —7/2 (6.34)
N = 0/n+ Ao (6.35)
p = E£vVz2+ (po—y)?), taking sign of n (6.36)
0 = arctan ( < ) (6.37)
po—Y
To revert these coordinates to the unshifted spherical coordinates:
¢. = arcsin(sinasin ¢’ + cosacos @’ cos(N — 3)) (6.38)
Ae = arcsin(cos ¢ sin(\ — )/ cos de) + Ao (6.39)
At this point the ellipsoid coordinates are obtained from
A= A/CH+ X (6.40)
t 1/C (4 9 4
¢; = 2arctan an [7(¢'/2 + m/4) S| —7/2 (6.41)
K1/C (1 — esin ¢>H)e/
1+esing;_1

with the initial value of ¢;,_; = ¢. and ¢;_; iteratively replaced by ¢; until |¢; —¢;_1|
is less than an acceptable error value.

The Krovak Projection Grid

The following script defines the execution of the program proj to compute coordi-
nates for the S-JTSK grid system covering the states of the Czech Republic and
Slovak Republic. The central (or origin) longitude is specified as being 42°30" east
of the a point off the isle of Ferro (Hierro) in the Canary Islands. The Ferro point
is at 17°39’59.7354"W but the value is often rounded to 17°40’'W for topographic
work. The latitude of origin on the ellipsoid is 49°30’. The latitude of the trans-
lated pole on the original conformal sphere is 56°42'42.69689” and the latitude of
the cone’s point of tangency on the translated sphere is 78°30’.

#<S-JTSK> Krovak Coordinate System
proj +proj=kocc +ellps=bessel +czech
+lon_0=42d30
+lat_0=49d30
+lat_t=59d42’42.69689
+lat_1=78d30
+k_0=.9999

The natural math conversion puts the coordinates of the area in the —x, —y
quadrant. The S-JTSK projection, however, uses positive y to the left of the lon-
gitude of origin and positive x south of the cone’s polar point near Helsinki. The
option +czech converts to S-JTSK x,y output.

6.0.9 Lambert Conformal Conic Alternative Projection

+proj=lcca This tangential conic projection is a variant of the Lambert
Conformal Conic that was employed by the French and several north African and
near eastern countries. The unique problem was that the projection was computed
with a severely truncated series which compromised its conformality as well as
creating confusion.



89

Forward projection

The following are the equations to determine the planar coordinates from geographic
coordinates.

x = rsinf (6.42)
y = 1r9—rcosf (6.43)
6 = 1A (6.44)
I = singp (6.45)
r ro F Ar (6.46)

3 4 .
Ar = F(S)=S+—> {iS(5Ro 4N, tan ¢g

6RoNo 24RZNG
55(5 + 3 tanj ¢0) + 56(7 —+ 4tan2 gf)(jl) tan (;50 (647)
120R N3 240R N

S = M(¢)— M(¢o) (6.48)

ro = No/tangy (6.49)
Ny = a/y/1—e2sin® ¢y (6.50)

1— 2
R, = a(l =€) (6.51)

(1 — e2sin? ¢og)3/2

where M (¢) is the meridinal arc distance from the equator to latitude ¢.

In the case of this “nearly conformal” projection, only the first two terms of
are evaluated. Even the remaining series coefficients (inside curly braces)
are an approximation where the higher order terms were simplified by assuming
Ry = Np.

Inverse projection

The geographic coordinates are obtained from the planar cartesian by:

0 = arctan ( < ) (6.52)
To—Y

Ar = y—zxtan (g) (6.53)

A = 0/singg (6.54)

The value of S can be obtained by applying Newton-Raphson’s method to (6.47):

Siy1 =15 — F(S)

(6.55)

where the initial value of S; = Ar and iteration is continued until specified tolerance
is met. Finally, latitude is obtained from the inverse meridinal arc routine:

¢ =M"1(S+ M(¢o)); (6.56)

PROJ.4 usage

Projection selection is +proj=lcca where only +lat_0= is used to specify point of
cone tangency and mathematical origin (along with +lon_0). For a secant cone, use
the scale factor option +k_0=.

For an accurate, complete Lambert Conformal Conic use +proj=lcc.
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6.0.10 Hall Eucyclic.

+proj=hall [+K=] or [+beta=] Fig. [6.1] Ref. [16]
Without specifying options K assumes the value of 1. For computing the Maurer
SNo. 73 projection, set beta=45d. In all cases compute

1

sin 8 = oK (6.57)
A= (6.58)
o = g (1 +K+VE@2+ K)) (6.59)

When |¢| # 7/2 use Newton-Raphson iteration to determine 6 from
P)=60—-K?3—(1+ K)sin6

+(1+(1+K)*—2(1+ K)cosb) (6+arctansme)

14+ K —cosf
1
- 5(1—sin¢)[ﬂ'+4ﬁ(1+K)] (6.60)
1oy . sin 0
P'(0) =2(1+ K)sinf (ﬂ + arctan TT K —cosd cosﬁ) (6.61)
and then
p=AV1+(1+K)2—2(1+K)cosf (6.62)
sin 6

(1 = arctan (6.63)

1+ K —cosf

Otherwise #; = 0 and

) AK if p =7/2
P= {A(K+2) it ¢ = —7/2 (6.64)

Finally
w=2Bt8) (6.65)
™
x = psinw (6.66)
Y = po— PCosw (6.67)

where pg is determined from ¢q.
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.;,X S s

Figure 6.1: A-Hall Eucyclic and B-Maurer SNo. 73 (+proj=hall +K=0)
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Chapter 7

Azimuthal Projections

7.1 Perspective

7.1.1 Perspective Azimuthal Projections.

The term perspective is applied to several of the azimuthal projections as well
as a few conic and cylindrical projections. Figure shows the geometry of the
perspective projection where a ray originating at the “perspective” point P passes
though the object to be plotted at L to the plane of the map at L’ at a distance p
from the point of tangency of the plane with the sphere. From the known conditions,
1 and h the the distance p is determined by the general expression

(14 h)siny

P hfcosy (7.1)

From this equation three of the common perspective azimuthal projections are sim-
plified special cases of h:

tan ¥ h = 0 Gnomonic
94
p= % = 2tan(¢/2) h =1 Stereographic (7.2)
sin ¢ h = oo Orthographic

The angle ¢’ is the limit of 1 for the visible part of the projection and is defined
by:

o = arccos(—1/h) |h| > 1 (73)
"~ | #/2+aresinh b <1 )

For the case where |h| < 1 then p = oo when 1) =)'
For the case where TS is the polar axis the angle 1) becomes the colatitude and
equation 7?7 becomes

cot ¢ Gnomonic
p = 2tan(m/4 — ¢/2) Sterographic (7.4)
cos ¢ Orthographic

The Cartesian coordinates polar aspect

T = psin \ Yy = Fpcos A (7.5)

93
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Figure 7.1: Geometry of perspective projections

where A = 0 follows the negative y azis for the North polar aspect and the positive

y axis for the South polar aspect.

For the oblique aspect ¥ or the angular distance of L from the center of the
projection (¢, A = 0) to the projected point is the geodesic or “Great Circle”

distance. Snyder in both [I4] and [I7] has used:
€0oS 1 = Sin ¢g sin ¢ + cos ¢g COS ¢ CoS A

However, for better precision near the origin ([I4l p. 30]):

1/2
cos(1/2) = {sin2 ((b _2%) + cos ¢ cos ¢ sin? %

The azimuth from the projection center to the point is:

sin @ = sin A cos ¢/ sin ) or

cos o = (cos ¢y sin ¢ — sin ¢y cos pcos \)/ sin )
The oblique coordinates z,y are

x = K cos¢sin \
y = K(cos ¢y sin ¢ — sin ¢ cos ¢ cos \)

where
1/(sin ¢4 sin ¢ 4 cos ¢ cos ¢ cos \) Gnomonic
K = ¢ 2/(1+ sin ¢y sin ¢ + cos ¢1 cospcos A)  Stereographic
1 Orthographic

Further simplifications for the equitorial case are obvious.
For the inverse projection the first operation is to determine

p= a2ty

(7.6)

(7.12)

(7.13)
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If p=0 then A =0 and ¢ = ¢9. Otherwise

arctan p Gnomonic
) = { 2arctan ﬁ Stereographic (7.14)
arcsin p Orthographic

Geographic coordinates are now obtained from

¢ = arcsin [cos ¢ sin ¢y + (y sinyp cos ¢g)/p] (7.15)
A = atan2(x sin ), p cos ¢ cosp — y sin ¢ sin 1)) (7.16)

If | o] = 90° then
A = atan2(z, Fy) (7.17)

where y takes the opposite sign of ¢g.

7.1.2 Stereographic Projection.

+proj=stere
+proj=sterea
+proj=ups
+proj=rouss

The conformal Stereographic projection is useful for both mapping of continental
size regions as well as grid systems with a near circular perimeter. Although spher-
ical form, useful for small scale projections has only one set of equations, three
different forms of the ellipsoid Oblique Stereographic projection are available. Two
of them are based upon conformal coversion of the geographic coordinates on the el-
lipsoid to coodinates on the sphere while the third uses a polynomial approximation.
For the polar aspect, only one ellipsoidal method is used in the +proj=stere version
and the specialized use of the polar projection in the Universal Polar Stereographic
system is available with +proj=ups.

Spherical Stereographic

The forward spherical oblique equations (0 < |¢g| < 7/2) are:

x = 2kcosgsinA (7.18)
= 2k(cos ¢ sin ¢ — sin ¢g cos ¢ cos ) (7.19)

where
k= ko/(1+ sin¢gsin¢ + cos ¢ cos ¢ cos \) (7.20)

For the equitorial aspect, ¢g = 0,

y = ksing (7.21)
E = 2ko/(1+ cospcosA) (7.22)

and where x is obtained from equation [7.18]
For the polar aspect, ¢¢ &+ 7/2, the equations simplify to:

T .9
x = 2kotsinA (7.24)
y = 2fkotcos A (7.25)
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where f F 1 is assigned the opposite sign of ¢q.
To determine the inverse spherical projection determine:

po= (@*+y)'? (7.26)
¢ = 2arctan (220> (7.27)
If p = 0 then ¢ = ¢9 and A = 0 otherwise for the general oblique case:
¢ = arcsin <coscsin ¢o + ysmccosgbo) (7.28)
rsinc
= 2 .2
A arctan (p COS (g COs ¢ — ¥ sin ¢g sin c) (7.29)
or for the polar case
A = arctan?2 (ny) (7.30)
where f £ 1 with the sign of ¢g. For the equitorial case:
A = arctan?2 (acsmc) (7.31)
p COS g COS C

In the case of +proj=stere the specification of the latitude origin (+1lat_0=¢g)
determines the oblique or polar mode of usage. Scaling may be performed by using
k_0=ko in all cases or latitude of true scale (+lat_ts=d¢,;) for the polar case. Note
that the central meridian for the southern polar case runs from the projection origin
to the north.

The Universal Polar Stereographic is much like the Universal Transverse Mer-
cator system where scaling and false easting/northings are all predefined and an
ellipsoid must be specified.

Oblique Stereographic using intermediate sphere.

Using the spherical stereographic projection:

x = 2kR.cosxsin(A.) (7.32)
y = 2kRc[cos xpsin x — sin xg cos x cos(A.)] (7.33)

where
k= ko/[1+ sinypsinx + cos xo cos x cos(A¢)] (7.34)

The difference between stere and sterea is how the conformal latitudes x and xq
and longitude A\, and radius R, are determined.
For determining the x, xo and R. values the function series pj_sgauss and
pj-gauss are used for the respective stere and sterea entries (see section .
For the inverse case:

p = @@+y*)? (7.35)

¢ = 2arctan <2chk)0) (7.36)

X = (cos csin xo + ysmccoon> (7.37)

A = arctan < reme . . ) (7.38)
P COS X COS ¢ — ysin o sin ¢

Where p = 0 then x = x) and A. = 0. For the geographic coordinates execute the
inverse confomal functions pj_sgauss_inv or pj_gauss_inv.
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Oblique Roussilhe Stereographic.

Another oblique version of the stereographic projection for the ellipsoid presented
by Roussilhe [12]. Given:

¢

s = Mdgo (7.39)
%o

a = ANcoso (7.40)

where M and N are the respective ellipsoid meridional radius and radius normal to
the meridian:

M = (1—e?)(1-e*sin?¢)=3/?
N = (1-—eé%sin?¢)71/?

then the Cartesian coordinates are computed by:

r = a4+ Ajas® — Aya® — A3a’s + Ajast — Asals® — Aga® (7.41)
= s+ Bia? + Bys® + Bza?s + Bya* + Bsa®s? — Bgats +
B.a?s3 + Bgs® (7.42)
and where:
to = tan (;50
1 to
Al = B = —2_
Y7 4MLN, YA
Ay — 212 — 1 — 22 sin? ¢y B, 1
12MON0 12M0N0
A, — To(1+4t3) B — 1+ 2t — 2e?sin® ¢
57 T12MoN? 3T 4MoN,
1 to(2 —t3)
A= —— B, =~~~ "0/
* T 24MEN2 T 24MN2
1268 + 1182 — 1 to(5 + 4t3)
As = — e By = e
24 MG NG 8MoNg
—2t8 + 113 — 2 6ty — 5tg — 2
Ag = — o — Bs = — o=
240 M2 Ng 48 MZ NG
12t§ +19t3 +5
By = 2 N2
24 M NE
1
Bg=——
® T 120M2NZ

The distance s is obtained from the meridional distance function pj mdist
by initializing so with the meridional distance at ¢y and subtracting it from the
meridional distance for each value of ¢.

For the inverse projection first determine:

a = x—Cixy® + Cox® + Csa®y — Cuz® + Cs23y? + Coay®* —
Craby — Ceady? (7.43)
s = y—Diz?—DyY? — Dyz®y + Dya* — Dsaz?y? + Dgazty — D7y +
Dgy® — Dgz% + Dyoa*y? + Diia’y?* (7.44)

where
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1
C, =
Y VA A
212 — 1 — 2¢?sin” ¢y
Cy =
12My Ny
to(1 + t2
Oy — o(1+ g)
3MyN;
22t3 + 34t3 — 3
Co=— ormna—
240 M2 N2
o = 12t3 +13t3 + 4
T 24M2EN?
1
Co = —g—s
®~ 16M2N?

o = to (165 + 33t% + 11)
T ASMZN3
to(4t2 +1)

Cg = 2 N3
36 M2 N

Dy

Dy =

Ds

Dy =

Dy =

Dg =

D7 =

Dg

Dy =

Dy =

CHAPTER 7. AZIMUTHAL PROJECTIONS

to
~ 2N,
1
12My Ny
1+ 2t2 — 2¢? sin? ¢
4 My Ny
to(1+t3)
8MyNZ
to(1+ 2t3)
AMyN?
6ty +6t5+1
16M2Ng
 t3(3 4 4t3)
SMZNZ
1
~ BOMZN?
to(—26t3 + 17812 — 21)
T20M3 N
to(48t3 + 86t 29)
96 MENS
to(44t% + 37)
T 96MZNG

Determine the latitude from the inverse meridional function pj_inv_mdist for s+ s
and determine longitude from A = (1 — €2 sin? ¢)*/2/ cos ¢

7.2 Modified

7.2.1 Hammer and Eckert-Greifendorff.

+proj=hammer [+W=] Fig. 7?7

{

0.5

2

o~

D
T = 37 cos psin(WA)

1+ cos ¢ cos(WA)

y=Dsing¢

Hammer (+W when not given)
0.25 W=0.25 for Eckert-Greifendorff (fig. ?7?)

>;

(7.45)

(7.46)

(7.47)
(7.48)

7.2.2 Aitoff, Winkel Tripel and with Bartholomew option.

+proj=aitoff
+proj=wintri [lat_1=]
The formulas for Aitoff:

A
0 = arccos (cos ¢ cos 2)

(7.49)
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If 6 =0, then z =y =0 else

cosa = —— (7.50)
x = +dsina (7.51)
y =dcosa (7.52)

where x takes the sign of A.
For Winkel Tripel the values for (z1,y;) are determined from above and the
values (z3,y2) are determined from the Equirectangular projection repeated here:

~)50.467°  Winkel Tripel (+1at_1= not defined) (7.53)
R P +lat_1=40 for Bartholomew (fig. [7.2) ’
Ty = Acos ¢y (7.54)
Y2 =¢ (7.55)
Resultant value is:
s ;F@ (7.56)
y= Y ‘592 (7.57)

7.2.3 Wagner VII (Hammer-Wagner) and Wagner VIII.

Name +proj= Fig. Ref.
Wagner VII  wag? 77
Wagner VIIT  wag8 7?

For n = 1/3, initialization for Wagner VII:

my =1 (7.58)
my = sin 65° (7.59)
k = 2V/sin 32.5° (7.60)
2
C, = k (7.61)
nmq
C, = —2 (7.62)
Y kg '
and for Wagner VIII:
1.2 ©
g — arccos(1.2 cos 60°) (7.63)
60°
51n65°
= —— 7.64
" sin(m290°) (7.64)
[2sin 32.5°
k=\—/—— 7.65
sin 30° ( )
2
C, = _ 2k (7.66)
mimeon
2
Cy = (7.67)

ky/miman
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Figure 7.2: Modified Azimuthals.
A-Aitoff, B-Winkel Tripel, C-Hammer, D-Eckert-Greifendorff (+proj=hammer
+W=0.25), E-Wagner VII, F-Wagner VIII, G-Wagner IX and G-Bartholomew
(+proj=wintri +lat_1=40).
Common computations [22, p. 205-207]:
sin ¢ = my sin(mag) (7.68)

cosd = cos ) cos g (7.69)

If § =0 then x =y = 0 else

(7.70)
.0
x = +C,sin 5 sina (7.71)

y = Cysin g cos & (7.72)
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where z assumes the sign of \. An alternate, more efficient method [I7), p. 233] for

the common computations are:

S = ml *sin(m2 * ¢)

Co=+v1-52

C1 = [Hc'ojos(/\/?))]

x::%%CbCHSHKA/Q
Cy
y= 7501

7.2.4 Wagner IX (Aitoff-Wagner).
+proj=wag9 Fig. 77

5
n=-—
18
o T
9
14
k=4—
5
Y =m¢

0 = arccos[cos(nA) cos ]

If § =0 then x =y = 0 else

sin vy
cosq = —

sin 6

+ i 0 si
T = sin «v

vmn

1 1)
= cos v
Y kv/mn

where = takes the sign of .

7.2.5 Gilbert Two World Perspective.
gilbert [lat_1=] Fig. 77 Ref: [3]

x =cos¢d sin\
y = cos ¢} sin ¢’ — sin @] cos ¢’ cos N’
D = sin ¢ sin ¢’ + cos ¢} cos ¢’ cos X’

where D > 0 for points to be visible and

¢’ = arcsin tan (?)

A
,—7
A_z

(7.73)
(7.74)

(7.75)

(7.76)

(7.77)

(7.78)

(7.79)

(7.80)

(7.81)
(7.82)

(7.83)

(7.84)

(7.85)

(7.86)
(7.87)
(7.88)

(7.89)

(7.90)

The latitude ¢; is the latitude of perspective azimuth for the oblique case which

has a default value of 5°.
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Chapter 8

Miscellaneous Projections

This category is a collection of projections that often defy the process of classifica-
tion. Some are termed “Globular” as the meridians at £90° of the central meridian
are circular and usually form the boundaries of a hemispherical plot. Others might
be considered Pseudocylindricals and variants of conics but by tradition end up
being classified as miscellaneous. Some projections seem like simply cartoons.

8.1 Spherical Forms

8.1.1 Apian Globular IT (Arago).

+proj=apian2 Ref. [I5][p. 104]
Early (1524) projection also credited to Arago (1835). Equations based upon de-
scription of “equidistant elliptical meridians and equidistant straight parallels.”
This projection is similar to Apian I within the hemisphere—see comparison figure

BI

y=0 e=2(E) - (8.1)

8.1.2 Apian Globular I, Bacon and Ortelius Oval.

Name +proj= figure Ref.
Apian Globular I  apianl 17 [p. 234]
Bacon Globular bacon 7] [p. 234]
Ortelius Oval ortel 7] [p. 235]
Apian and Ortelius
y= {f . (8.2)
5sing Bacon
(/27
2
[ ) (83)
/2 Ortelius when || > 7/2
0 ifA=0 S4
v i(|A\—F+(F2—y2)%) if A #£0) (84)

where x takes the sign of \.

103
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Figure 8.1: Apian Comparison
Global plot of A—Apian I and B—Apian II.,

8.1.3 Armadillo.

+proj=arma Fig. [8.3] Ref. [T7, p. 23§]
First determine

B cos(A/2)
¢s = — arctan ( tom 20° ) (8.5)
then if ¢ > ¢, then
LA
x = (1 + cos ¢) sin 3 (8.6)
y = (1 +sin20° — cos 20°)/2 + sin ¢ cos 20°
— (1 4 cos ¢) sin 20° cos(N\/2) (8.7)
else point invisible.
8.1.4 August Epicycloidal.
+proj=august Fig. [8.3| Ref. [I7 p. 235]
C, = (1 — tan? ‘;5) (8.8)
C=1+Ccos % (8.9)
T = % sin% (8.10)
tan(¢/2
- s
4
r = §x1(3 + 23 — 3y3) (8.12)
4

y=zuB+ 327 — yi) (8.13)
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Figure 8.2: Globular Series
A—Bacon Globular, B-Fournier Globular 1, C—Nicolosi Globular and D—Apian Glob-
ular 1.
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o

Figure 8.3: General Miscellaneous
A—August Epicycloidal, B-Eisenlohr, C-Ortelius Oval and D—Armadillo.

8.1.5 Eisenlohr

+proj=eisen Fig. [8.3] Ref. [I7, p. 235]

S; = sin% (8.14)
Ch = cos % (8.15)
Q = cos g (8.16)
_ sin(9/2) 617)
Q + (2cos¢)2C)
2\
C = o7 T2> (8.18)
P= CO; ¢ (8.19)
[Q+P(Ci+5)]°
v=orrres) (520)

= (3+82)(=2lnV +C(V —1/V)) (8.21)
y=(3+8%)(—2arctanT + CT(V + 1/V)) (8.22)
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8.1.6 Fournier Globular I.

+proj=fourl Fig. Ref. [I7], p. 234]
If X=0or |¢| = /2 then

z=0
else if ¢ = 0 then
=\

else if || = 7/2 then

T = Acos¢
otherwise
2
T
C=7
P = |7 sin ¢|
42
S = C-9
P —2¢|
)\2
A=— -1
C

y:i({stA(cfpsz?)}% fs) /A

2

Yy
:ﬂF
x C

where x and y take the respective signs of A and ¢.

8.1.7 Guyou and Adams Series

Name +proj=

y=2¢
y=0
y:gsinqb

Ref.

107

(8.23)

(8.24)

(8.25)

Guyou guyou
Adams Hemisphere in a Square  adams_hemi
Adams World in a Square I adams_wsI
Adams World in a Square II adams_wsII

[I7, p. 235-236]

Several projections have common usage of the elliptical integral of the first kind

and are collected under this section.
For the Guyou projection: If |¢| = 7/2, then
=0
y = £1.85407 taking the sign of ¢

else where |\| < 7/2

cosa = (cos psin A — sin @) /v/2
cosb = (cos ¢sin A + sin ¢)/v/2
Sm = £1 takes sign of A
S, = +1 takes sign of ¢
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For the Adams Hemisphere in a Square projection where |\| < /2:

cos a = cos ¢sin A
T
b=—-—
5 ¢
S = =£1
Sp, = %1

takes sign of sin¢ + a

takes sign of sin¢g — a

For the Adams World in a Square I poles at centers of sides projection:

sin ¢’ = tan g

cosa = (cos ¢ sin% — sin ¢/> /V2
s A Y
cosb = [ cos ¢ s1n§+s1n¢) /N2

Sm = +1 takes sign of A
S, = +1 takes sign of ¢

8.38
8.39

8.40
8.41

~—~ o~ o~
—_ — —

For the Adams World in a Square II poles at opposite vertexes projection:

sin ¢’ = tan g

DA
cosa = cos ¢’ sin >

cosb = sin ¢’
Sm = *1
S, = *£1

takes sign of sin¢’ + a
takes sign of sin¢’ — a

Finally compute:

sinm = i(l—i—cosacosb—smasmb)%
smn—:I:(l—cosacosb—smasmb)%
= F(m,0.5)
F(n,v0.5)

where m takes the sign of .S,,

where n takes the sign of S,

(8.47)

8.48

8.49
8.50

)
)
)
8.51)

(
(
(
(

where F(¢,k) is the elliptic integral of the first kind. Because the factor k is
moderately large and because it is constant and the function itself is well behaved,
the use of a Chebyshev approximation series is warranted.

~ lz_: i Ti(¢)
i=0

_ 560
where
To(¢) =1
Ti(¢) =9
Ty(¢) = 2¢° — 1
Tn+1(¢) = 2¢Tn(¢) —Th—1 n2>1

(8.56)

(8.57)
(8.58)
(8.59)

(8.60)
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Normalizing the elliptic integral, F(¢,k)/¢ allows an even Chebyshev series to be
determined with significantly fewer terms for a given precision. The follow list of
even coefficients (stored in order) provide for an approximating function with a
precision better than 1 x 10~7 which should be sufficient for spherical earth appli-
cations.

co = 2.19174570831038 ¢4 = 5.30394739921063e — 05
c1 = 0.0914203033408211 cs = 3.12960480765314e — 05
cp = —0.00575574836830288 ce = 2.02692115653689¢ — 07
c3 = —0.0012804644680613 c7 = —8.58691003636495¢ — 07

These are evaluated using Clenshaw’s recursion in the following manner:

2
x = ¢— scale argument range to £1
71'

x=2z? —1 compensate argument for even series
t1=1t2=0

For i = M — 1 while 7 > 0 do

t=11

t1 =2xt1 —to + ¢
to =1

1=1—1;

where M is the order of the coefficient array. Finally compute

F(d), V 05) = (;5 <$t1 — 1o+ ;Co>

8.1.8 Lagrange.

+proj=lagrng +W= +lat_1= Fig. |8.5| Ref. [IT], p. ]
The factor M is the ratio of the difference in longitude from the central meridian
to the a circular meridian to 90°. Thus for M = 1 the hemisphere is in a circle and
for M = 2 the world is in a circle. Factor ¢; is the central latitude of the projection
and forms a straight line parallel. If |¢| = 7/2 then

z=0 (8.61)
y = £2 where y takes the sign of ¢. (8.62)
otherwise
1+ sin ¢y g
A= ——F+ .
! (1 —sin¢>1> (8.63)
_ (1+sing 7w
4= (Lrino) oo
V=A,4A (8.65)
C:(V+1/V)/2—|—cos% (8.66)
2
=5 sin % (8.67)

y=V-1/V)/V (8.68)
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Figure 8.4: Miscellaneous Square Series
A—-Guyou, B-Adams World in a Square I, C-Adams Hemisphere in a Square and
D-Adams World in a Square II.

For normal Lagrange, W = 2 and ¢-0 which are default values when omitted. If
W =1 and ¢; = 0 then equitorial Stereographic results.

8.1.9 Nicolosi Globular.

+proj=nicol Fig. Ref. [I7, p. 234]
If A\=0 or |¢| = /2 then

x=0 y=¢ (8.69)
else if ¢ = 0 then

=\ y=20 (8.70)
else if |A| = 7/2 then

T = \coso y= T sin ¢ (8.71)
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Figure 8.5: Lagrange Series

A—Lagrange +W=1.43, B—+W=1 +lon_0=90W, C—default options, D—1lat_1=45N.

else
T 2\
b: _— = —
2\ T
2¢
c=—
T
_ 1—¢?
sing — ¢
b
k=-
d
k.=1/k
M= k%sing + b/2
1+ kr2
N - k2sing +d/2
1+ k2

2 14 k2

Y

2 .. 92 . -
I P PN kisin“¢ +dsing — 1
2 1+ k2

where £ takes the opposite sign of ¢

2473
r= " (Mj: [M2+ cos qﬂ ) where + takes the sign of A

)

(8.72)
(8.73)

(8.74)
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8.1.10 Van der Grinten (I).
+proj=vandg Fig. Ref. [I7, p. 237]

B=%W C=(1-B?z2
If ¢ =0 then
T=A y=20
else if A = 0 then
B
v=0 y:i1:C

else if |¢| = /2 then
z=0 Yy ==x7

where y takes the sign of ¢ in last two cases else

C=pic-1

2
p-c(2-)
Q=A"+B
S = P? 4 A2
T=G-P?
_ . 22 2 _ p2yik
xfiS(AT+[AT S(G P)])

y = j:% (PQ — A[(A2+1)S — Q2]%)

where x and y take the respective signs of A and phi.

8.1.11 Van der Grinten II.
+proj=vandg2 Fig. Ref. [T, p. 237-238]

Bz%\sﬁl C=(1-B%3
If ¢ = 0 then

xT=A y=0
else if A = 0 then

z=0 Yy = B

(8.81)

(8.82)

(8.83)

(8.84)

(8.85)

(8.93)

(8.94)

(8.95)
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else if |¢| = /2 then
z=0 Yy ==x7

where y takes the sign of ¢ in last two cases else

T A
A=13"=
_ C(1+ A%z — AC?
T T R
xr=+rx

y =471l — 21 (24 + 22))?2

where = and y take the respective signs of A and phi.

8.1.12 Van der Grinten III.
+proj=vandg3 Fig. Ref. [I7)[p. 238], [13][p. 78]

2 1
B = Z|¢| C=(1-B?%:
™
If ¢ =0 then
T=A y=20

else if A = 0 then

B
z=0 v=E06
else if |¢| = /2 then
z=0 Yy==xm
where y takes the sign of ¢ in last two cases else
x:i((Az—l—l—y%)%—A y = +my
where x and y take the respective signs of A and phi.
8.1.13 Van der Grinten IV.
+proj=vandg4 Fig. Ref. [I7, p. 236]
If ¢ =0 then
T=A y=20
else if A =0 or |¢| = 7/2 then
z=0 y=2¢

113

(8.96)

(8.97)

(8.98)

(8.99)
(8.100)

(8.101)

(8.102)

(8.103)

(8.104)

(8.105)

(8.106)

(8.107)

(8.108)
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Figure 8.6: Van der Grinten Series
A-Van der Grinten (I), B-Van der Grinten II, C—Van der Grinten III, D—Van der
Grinten IV and E-Larrivée.

else
2
B = —|¢| (8.109)
™
_ —5+ B(8— B(2+ B?))
C= BB~ 1) (8.110)
2A
== A11
R=" (s111)
o\’
D=4 { <R + 2) - 4} taking the sign of (A —7/2) (8.112)

F=(B+C)?B?*+C?*D?-1)+ (1 - B?
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8.1.14 Larrivée.
+proj=larr Fig. [8.6] Ref. [I5][p. 262

Similar to Van der Grinten I but without circular arcs.

x:)\(lJr\/cosgb)/? y=0o/ <cos§cos

;)

6
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Chapter 9

Oblique Projections

All of the spherical forms of the libproj4 projection library can be used as an
oblique projection by means of the pj_translate function described on . The user
performs the oblique transformation by selecting the oblique projection +proj=ob_tran,
specifying the translation factors, o_lat_p=a, and o_lon_p=(3, and the projection to
be used, +o_proj=proj. In the example of the Fairgrieve projection the latitude and
longitude of the pole of the new coordinates, o and (3 respectively, are to be placed
at 45°N and 90°W and use the Mollweide projection. Beccause the central meridian
of the translated coordinates will follow the § meridian it is necessary to translate
the the translated system so that the Greenwich meridian will pass through the
center of the projection by offsetting the central meridian. The final control for this
projection is:

+proj=ob_tran +o_proj=moll +o_lat_p=45 +o_lon_p=-90 +lon_0=-90

Figure ?? shows a plot the resultant projection. Two more examples of oblique
Mollweide projections are shown in figure ?7.

9.0.15 Oblique Projection Parameters From Two Control Points

A convenient method of determining the position of the translated pole is by spec-
ifying two points along the central meridian with the equations:

3 = arctan COS (b1 Sin @2 cOS A1 — sin @1 cos ¢1 cos Ay ©.1)
= sin ¢ cos ¢g sin Ag — cos ¢1 sin ¢g sin A\ .
—cos(B— A1)
N T tang, 2
a = arctan ( tan g ) 9.2)
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