

18 Intergraph Standard File Formats
(Element Structure)

The Intergraph Standard File Formats (ISFF) are the file formats
common to MicroStation and Intergraph’s Interactive Graphics
Design System (IGDS). ISFF is now available to the public. This
enables Intergraph customers and third-party developers to create
custom applications for MicroStation that read and write ISFF
format without a license from Intergaph.

Types of Files
ISFF consists of several types of binary files:

• Design files are sequential, variable-length files with variable-
length records for the Design File Header (see page 18-2), file
set-up information, graphic elements, and non-graphic data.

User-defined elements begin with the fourth element.

Design files are typically designated with the extension “.dgn.”

• Cell libraries store cell definitions for placement in design
files. A cell library consists of a file header (type 5) element
followed by individual cell descriptions. Each cell is a
complex element that contains a cell library header (type 1)
element and component elements.

Cell descriptions can be nested. Nested cells contain a type 2
header and component elements. If the cell library already
contains the nested cell, its component elements are not
repeated.

Cell libraries are typically designated with the extension “.cel.”
MicroStation 95 Reference Guide 18-1

Design File Header
Design File Header
The first three elements of the design file are called the design
file header.

Type: Stores:

8. Digitizer setup Used only by IGDS; it is ignored by
MicroStation.

9. Design file settings Settings that are saved when FILEDESIGN is
executed (File menu/Save Settings)..

10. Level symbology The symbology (color, line style, and line
weight) that elements on a level display with
in a view for which Level Symbology is on.

TYPE 9
Words to Follow

Design File Header

TYPE 8
Words to Follow
IGDS Digitizer

TYPE 10
Words to Follow
Level Symbology

Words to Follow
User Element

Words to Follow
User Element

End of File

TYPE 5
Words to Follow
Library Header

Words to Follow
Component

Words to Follow
Component

TYPE 1
Words to Follow

Total No. of Words
Cell Header

Next TYPE 1 or
End of File

Design file (left)
and cell library

(right) structure.
18-2 MicroStation 95 Reference Guide

Primitive and complex elements

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
Primitive and complex elements

Primitive elements
The primitive elements are lines, line strings, shapes, ellipses,
arcs, text, and cones.

Complex elements
A complex element is a set of elements that logically forms a
single entity.

Complex elements are stored in the design file as a header
followed by the component elements. Text nodes, complex
chains, and complex shapes are stored in the design file as shown
in the illustration at right.

Other complex elements are cells, surfaces, solids, and B-splines.
See the sections about those elements for information about how
their headers and component elements are arranged in the design
file.

The complex element header contains information about the
entire set of elements, including the number of component
elements. Word 19 of the header contains the total length in
words of the component elements plus the number of words
following word 19 in the header.

The maximum combined length of the header and all component
MicroStation 95 Reference Guide 18-3

Element Representation
elements cannot be greater than 65535 words.

Element Representation
This appendix shows the formats for ISFF elements. Each figure
shows the components of the element, the member names for
each structure, and the word (1 word = 16 bits) offsets for each
member. The figure represents the element as it appears in the
design file and its internal representation on the VAX, PC (DOS),
and Macintosh. This is the only figure that is important to most
programmers.

✍ The in-memory format of elements on the Intergraph CLIPPER,
Sun SPARC, and Hewlett Packard HP700 differs slightly from the
figures in this appendix. Long integers always start on even word
boundaries, and double-precision, floating point values always
start on four-word boundaries in this format.

Words to Follow
Total No. of Words

Elements = 2
Cell Header

Complex element structure
Words to Follow

Component

Words to Follow
Component

Next TYPE 1 or
End of File
18-4 MicroStation 95 Reference Guide

Element Representation

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
Byte ordering
Computers differ in their storage byte order, that is they differ in
which byte they consider to be the first of a longer piece such a
short or long integer.

In design files:

• Short integers are stored with little-endian ordering.

• Long integers are stored with middle-endian byte ordering (as
on the PDP-11).

Floating-point values
All floating-point variables are stored in the design file in VAX D-
Float format. MDL and MicroCSL automatically convert floating-
point variables to the native format of the CPU in use. Bits are
labeled from the right, 0–63.

Ordering: Example systems:
Address of long (32-bit)
integer is address of:

Illustration:

Big endian
(left-to-right)

SPARC, HP700, Macintosh, SGI,
and IBM RS6000

High-order byte

Little
endian
(right-to-left)

80x86-based PCs, CLIPPER, and
DEC Alpha

Low-order byte

1
5

1
4

7 6 0

Si
g

n Exponent Exponent :A

Fraction :A+2

Fraction :A+4

Fraction :A+6

6
3

4
8

3 2 1 0

0 1 2 3

2 3 0 1
MicroStation 95 Reference Guide 18-5

Common Element Parameters
Elements not described in this appendix
These element types are not described in this appendix. They are
not supported by IGDS and versions of MicroStation prior to
Version 4.0. They cannot be manipulated directly and must be
accessed with MDL built-in functions.

• 33. Dimension

• 34. Shared Cell Definition

• 35. Shared Cell Instance

• 36. Multi-line

All of these elements begin with the standard element header and
display header. Type 34 is a complex element in which the total
length of the definition is given in the word following the display
header.

Common Element Parameters
The parameters that are common to one or more elements are
explained here.

Element header
The first 18 words of an element in the design file are its fixed
header — containing the element type, level, words to follow,
and range information. The C declaration for this header is as
follows:

typedef struct
{
unsigned level:6; /* level element is on

*/
unsigned :1; /* reserved */
unsigned complex:1; /* component of complex

elem.*/
unsigned type:7; /* type of element */
unsigned deleted:1; /* set if element is

deleted */
unsigned short words; /* words to follow in

element */
unsigned long xlow; /* element range - low

*/
unsigned long ylow;
unsigned long zlow;
18-6 MicroStation 95 Reference Guide

Common Element Parameters

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
unsigned long xhigh; /* element range - high
*/

unsigned long yhigh;
unsigned long zhigh;
} Elm_hdr;

In addition, the next several components of all displayable
elements are identical. This additional header is defined as
follows:

typedef struct
{
unsigned short grphgrp; /* graphic group number */
short attindx; /* words between this and

attribute linkage
*/

union
{
shorts;
struct

{
unsigned class:4; /* class */
unsigned l:1; /* locked */
unsigned n:1; /* new */
unsigned m:1; /* modified */
unsigned a:1; /* attributes present */
unsigned r:1; /* view independent */
unsigned p:1; /* planar */
unsigned s:1; /* 1=nonsnappable */
unsigned h:1; /* hole/solid (usually)

*/
} b;

} props;
union
{

short s;
Symbologyb;
} symb;

} Disp_hdr;

Here, Symbology is defined as:

typedef struct
{
unsigned style:3; /* line style */
unsigned weight:5; /* line weight */
unsigned color:8; /* color */
} Symbology; /* element symbology word 652 */
MicroStation 95 Reference Guide 18-7

Common Element Parameters
Element type and level

The first word in the header defines the element’s type and level.

The fields in the first word are:

Words to follow

Word 2 of the element header indicates the number of words in
the element excluding words 1 and 2; that is the word count to
the next element in the design file (commonly referred to as
“words to follow” or “WTF”).

For complex elements, this defines the length of the header
element only and does not include component elements.

Range

Words 3–14 of the element header contain the six long (double
precision) integers that define the element’s range — its low and
high x, y, and z coordinates in absolute units of resolution (UOR).

All points in an element must be completely contained in the
design plane.

Graphic group number

Word 15 contains the element’s graphic group number. If zero,
the element is not in a graphic group. If non-zero, the element is
in a graphic group with all other elements that have the same
graphic group number.

Index to attribute linkage

Word 16 defines the number of words existing between (and
excluding) word 16 and the first word of the attribute data.
Attribute data is optional and may or may not be present.

U
Type

C R
Level

U clear if element is active; set if the element is deleted

Type number that denotes the element’s type

C set if the element is part of a complex element; otherwise clear

R reserved (equals zero)

Level number that indicates the element’s level (0-63)
18-8 MicroStation 95 Reference Guide

Common Element Parameters

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
Properties indicator

Word 17 describes the element’s properties:

H S P R A M N L
Reserved Class

Bit Indicates:

H For closed element types (shape, complex shape, ellipse, cone,
B-spline surface header, and closed B-spline curve header), the
H-bit indicates whether the element is a solid or a hole.
• 0 = Solid
• 1 = Hole
For a cell header (type 2), if the H-bit is:
• 0 = Header for a cell
• 1 = Header for an orphan cell (created by GROUP

SELECTION or application)
For a line, if the H-bit is:
• 0 = Line segment
• 1 = Infinite-length line
For a point string element, if the H-bit is:
• 0 = Continuous
• 1 = Disjoint
The H-bit has no meaning in other elements.

S Whether the element is snappable.
• 0 = Snappable
• 1 = Not snappable

P If a surface is planar or non-planar.
• 0 = Planar
• 1 = non-planar

R Element orientation.
• 0 = Oriented relative to design file
• 1 = Oriented relative to screen

A Whether attribute data is present.
• 0 = Attribute data not present
• 1 = Attribute data present

M Whether the element has been graphically modified.
• 0 = Not modified
• 1 = Has been modified

N Whether the element is new.
• 0 = Not new
• 1 = New (set to 1 when the element is placed)

L Whether the element is locked.
• 0 = Not locked
• 1 = Locked
MicroStation 95 Reference Guide 18-9

Common Element Parameters
Element symbology

Word 18 defines the element’s symbology (color, line style, and
line weight).

4–7 Reserved.

Class Represented as follows:
0. Primary; 1. Pattern component; 2. Construction element; 3.
Dimension element; 4. Primary rule element; 5. Linear
patterned element; 6. Construction rule element.

Color Class Style

Color Number (0-255) that indicates the element’s color

Weight Number (0-31) that indicates line weight

Style The line style is represented as follows:
• 0. Solid (SOL)
• 1. Dotted (DOT)
• 2. Medium dashed (MEDD)
• 3. Long-dashed (LNGD)
• 4. Dot-dashed (DOTD)
• 5. Short-dashed (SHD)
• 6. Dash double-dot (DADD)
• 7. Long dash-short dash (LDSD)

Bit Indicates:
18-10 MicroStation 95 Reference Guide

Common Element Parameters

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
Point coordinates
MicroStation is based on a 32-bit integer design plane. Point
coordinates are specified as two or three long integers (for 2D
and 3D design files, respectively). Coordinate definitions are
assigned by the following C structures:

2D

typedef struct
{
long x;
long y;
} Point2d;

3D

typedef struct
{
long x;
long y;
long z;
} Point3d;

Sometimes a point that is not within the design plane needs to be
specified. For example, the center point for an arc may be far
from the design plane, although the design plane must
completely contain the arc. In these cases, points are specified as
two or three double-precision (64-bit), floating point values:

2D

typedef struct
{
double x;
double y;
} Dpoint2d;

3D

typedef struct
{
double x;
double y;
double z;
} Dpoint3d;
MicroStation 95 Reference Guide 18-11

Common Element Parameters
Rotation angle (2D) and quaternion (3D)
In 2D design files, rotation is represented by a value, angle, that
is counterclockwise from the X-axis. Angle is a long integer with
the lower-order bit equal to .01 seconds. The conversion from
angle to degrees is expressed as follows:

• Degrees = Angle⁄360000

In 3D design files, an element’s orientation is represented by the
transformation matrix to design file coordinates. These
transformations are stored in a compressed format called
quaternions. Quaternions store a 3×3 ortho-normal
transformation matrix as four values rather than nine.

The mdlRMatrix_toQuat function (MDL) and the trans_to_quat
routine (MicroCSL) generate a quaternion from a transformation
matrix. The mdlRMatrix_fromQuat function (MDL) and the
quat_to_trans routine (MicroCSL) generate a transformation
matrix from a quaternion. See the documentation for these
functions for details.

Attribute linkage data
Any element can optionally contain auxiliary data commonly
referred to as attribute data or attribute linkage data. This data
can consist of a link to an associated database or any other
information that pertains to the element.

Attribute data that is not associated with DMRS or a MicroStation-
supported database such as Oracle is referred to as a user
linkage. A user linkage can co-exist with a database linkage or
other user linkages. MicroStation does not attempt to interpret
user linkages; these linkages are, however, maintained when
MicroStation modifies an element. When an element with a user
linkage is copied, the linkage is also copied. Therefore, multiple
linkages can occur.

The format of user linkages is described below. As with other
linkages, when user linkages are present, the A-bit must be set in
the properties word. Individual user linkages cannot exceed 256
words. Multiple user linkages can be attached to an element. The
combined length of an element and its linkages must not be
greater than 768 words. Considering worst-case element lengths,
the length of the linkage area should not exceed 140 words.
18-12 MicroStation 95 Reference Guide

Level Symbology (Type 10)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
User linkages consist of a header word, a user ID word, and user-
defined data. The
U-bit in the linkage header is set to indicate that the linkage is a
user linkage. The ID word should be unique to the software
package to which the linkage applies.

Level Symbology (Type 10)
Stores the symbology (color, line style, and line weight) that
elements on a level display with in a view for which Level
Symbology is on.

The values of the range are zero.

If the high bit in the next-to-last word of the range is set, then the
low three bits are flags for selectively using the three components
of the level symbology words.

• If bit 0 is clear, then use style (line code).

• If bit 1 is set, then use line weight.

• If bit 2 is set, then use color.

If the high bit in the next-to-last word of the range is clear, the
color, line weight, and line style are used.

The format of each level symbology word is the same as that for
Element symbology (see page 18-10).

Library Cell Header (Type 1)
Library cell header elements contain information needed to create
a cell in a design file. They are found only in cell libraries.

The celltype member indicates the following types of cells:

0. Graphic cell

1. Command menu cell

2. Cursor button menu cell

3. Function key menu cell (not supported by MicroStation)

4. Matrix menu cell
MicroStation 95 Reference Guide 18-13

Library Cell Header (Type 1)
5. Tutorial cell

6. Voice menu cell (not supported by MicroStation)

The C definition is as follows:

typedef struct
{
Elm_hdr ehdr; /* element header */
short celltype; /* cell type */
short attindx; /* attribute linkage */
long name; /* Radix-50 cell name */
unsigned short numwords; /* # of words in

description */
short properties; /* properties */
short dispsymb; /* display symbology */
short class; /* cell class (always 0)

*/
short levels[4]; /* levels used in cell

*/
short descrip[9]; /* cell description */
} Cell_Lib_Hdr;

Cell descriptions in cell libraries
Each cell description in a cell library is a complex element that
contains a library cell header (type 1) followed by component
graphic elements.

A cell definition can be nested — included in another cell. A
nested cell definition is stored as a cell header (type 2) that points
to a library cell header (type 1). The component elements of a
nested cell are not repeated.

When the user places a cell in the design file in IGDS and
versions of MicroStation prior to Version 4.0, or as an unshared
cell in MicroStation Version 4.0 or later versions, it is placed as a
cell header (type 2) followed by its component elements. Each
nested cell definition is placed with its cell header (type 2)
followed by its component elements.

In MicroStation Version 4.0 or later versions, when the user places
the cell in the design file as a shared cell:

• If there is no shared cell definition element for that cell in the
design file, one is created.
18-14 MicroStation 95 Reference Guide

Library Cell Header (Type 1)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
• If there is a shared cell definition element for that cell in the
design file, a shared cell instance element is placed in the
design.

• If the cell contains a nested cell and the nested cell is not
defined as a shared cell in the design file, a shared cell
definition element is created for the nested cell. If the cell
contains a nested cell and a shared cell definition is in the
design file, a shared cell instance element is created.

✍ Shared cell definition and shared cell instance elements are not
described in this appendix. They cannot be manipulated directly
and must be accessed with MDL built-in functions.

TYPE 1
Words to Follow

Total No. of Words
Library Cell Header

Arrangement of cells
and components in cell

library.

Left: Cell with no nested
cells.

 Right: Cell with nested
cell definition.

Words to Follow
Component

Words to Follow
Component

Next TYPE 1 or
End of File

TYPE 1
Words to Follow

Total No. of Words
Library Cell Header

Words to Follow
Component

Next TYPE 1 or
End of File

TYPE 1
Words to Follow

Total No. of Words
Library Cell Header

Words to Follow
Component

Words to Follow
Component
MicroStation 95 Reference Guide 18-15

Cell Header (Type 2)
Cell Header (Type 2)
A cell header element begins:

• A nested cell definition in a cell library.

• A cell placed in a design file in IGDS and versions of
MicroStation prior to version 4.0.

• An unshared cell placed in a design file in MicroStation Version
4.0 and later versions.

2D:

typdef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
unsigned short totlength; /* total length of cell */
long name; /* Radix 50 name */
short class; /* class bit map */
short levels[4]; /* levels used in cell */
Point2d rnglow; /* range block low */
Point2d rnghigh; /* range block high */
Trans2d trans; /* transformation matrix */
Point2d origin; /* cell origin */
} Cell_2d;

3D:

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
unsigned short totlength; /* total length of cell */
long name; /* Radix 50 name */
short class; /* class bit map */
short levels[4]; /* levels used in cell */
Point3d rnglow; /* range block low */
Point3d rnghigh; /* range block high */
Trans3d trans; /* transformation matrix */
Point3d origin; /* cell origin */
} Cell_3d;
18-16 MicroStation 95 Reference Guide

Cell Header (Type 2)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
Each cell header contains an origin (in design file coordinates)
and a transformation matrix that describe all manipulations
(rotation and scaling) from the cell library definition to the current
design file orientation. The transformation matrix is a 2×2 or 3×3
matrix stored as a long integer with the lower-order bit equal to
4.6566E-6 (10,000 ⁄231).

✍ Shared cells are stored in the design file as shared cell definition
and shared cell instance elements. These elements are not
described in this appendix. They cannot be manipulated directly
and must be accessed with MDL built-in functions.
MicroStation 95 Reference Guide 18-17

Cell Header (Type 2)
.

2D (left) and 3D (right) Cell Header
Word

Offse

t

Word

Offse
t

0-17 Header 0-17 Header
18 Words in Description cell_2d.totlength 18 Words in Description cell_3d.totlength

19
Cell Name

cell_2d.name 19
Cell Name

cell_3d.name

20 20
21 Class Bit Map cell_2d.class 21 Class Bit Map cell_3d.class

22

Level Indicators

cell_2d.levels 22

Level Indicators

cell_3d.levels

23 23
24 24
25 25
26 Range Block Diagonal

X1
cell_2d.rnglow 26 Range Block Diagonal

X1
cell_3d.rnglow

27 27
28

Y1
28

Y1
29 29
30

X2
cell_2d.rnghigh 30

Z1
31 31
32

Y2
32

X2
cell_3d.rnghigh

33 33
34 Transformation Matrix

T11
cell_2d.trans 34

Y2
35 35
36

T12
36

Z2
37 37
38

T21
38 Transformation Matrix

T11
cell_3d.trans

39 39
40

T22
40

T12
41 41
42

X Origin
cell_2d.origin 42

T13
43 43
44

Y Origin
44

T21
45 45
46

Attribute Linkage
46

T22
47
48

T23
49
50

T31
51
52

T32
53
54

T33
55
56

X Origin
cell_3d.origin

57
58

Y Origin
59
60

Z Origin
61
62

Attribute Linkage
18-18 MicroStation 95 Reference Guide

Line Elements (Type 3)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
Line Elements (Type 3)
Line elements consist of the header information and design plane
coordinates of the line endpoints.

2D:

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
Point2d start; /* starting point */
Point2d end; /* ending point */
} Line_2d;

3D:

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
Point3d start; /* starting point */
Point3d end; /* ending point */
} Line_3d;

2D (left) and 3D (right) Line Element
Wor

d
Offs
et

Wor
d

Offs
et

0-17 Header 0-17 Header
18

Start X
line_2d.start 18

Start X
line_3d.start

19 19
20

Y
20

Y
21 21
22

End X
line_2d.end 22

Z
23 23
24

Y
24

End X
line_3d.end

25 25
26

Attribute Linkage
26

Y
27
28

Z
29
30

Attribute Linkage
MicroStation 95 Reference Guide 18-19

Line String (Type 4), Shape (Type 6), Curve (Type 11), and B-spline Pole Element (Type 21)
Line String (Type 4), Shape (Type 6), Curve (Type 11), and B-
spline Pole Element (Type 21)

Line string, shape, curve, and B-spline pole elements are
represented similarly in the design file. The header information is
followed by the number of vertices and then the coordinates of
each vertex. A maximum of 101 vertices can be in an element of
these types. In a shape, the coordinates of the last vertex must be
the same as the first vertex. For curves, two extra points at the
beginning and end of the vertex list establish the curvature at the
ends. Thus, a curve can have just 97 user-defined points.

2D:

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
short numverts; /* number of vertices */
Point2d vertice[1]; /* points */
} Line_String_2d;

3D:

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
short numverts; /* number of vertices */
Point3d vertice[1]; /* points */
} Line_String_3d;
18-20 MicroStation 95 Reference Guide

Line String (Type 4), Shape (Type 6), Curve (Type 11), and B-spline Pole Element (Type 21)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
The curve (type 11) element is a 2D or 3D parametric spline curve
completely defined by a set of n points. The first two and last two
points define endpoint derivatives and do not display. The
interpolated curve passes through all other points.

A curve with n points defines n-1 line segments; interpolation
occurs over the middle n-5 segments. Each segment has its own
parametric cubic interpolation polynomial for the x and y (and z
in 3D) dimensions. The parameter for each of these polynomials
is the length along the line segment. Thus, for a segment k, the
interpolated points P are expressed as a function of the distance d
along the segment as follows:

Pk(d) = {Fk,x(d), Fk,y(d), Fk,z(d)} with 0 ≤ d ≤ Dk

2D and 3D Line String, Shape, Curve, and B-spline Pole Elements
Word
Offset

Word
Offset

0-17 Header 0-17 Header
18 Number of Vertices line_string2d.numverts 18 Number of Vertices line_string3d.numverts

19
X1

line_string2d.vertice[0] 19
X1

line_string3d.vertice[0]

20 20
21

Y1
21

Y1
22 22
23

X2
23

Z1
24 24
25

Y2
25

X2
26 26

27
Y2

28
29

Z215+4*
N XN

line_string2d.vertice[n-1] 30

16+4*
N
17+4*
N YN
18+4*
N
19+4*
N Attribute Linkage

13+6*
N XN

line_string3d.vertice[n-1]

14+6*
N
15+6*
N

YN
16+6*
N
17+6*
N ZN
18+6*
N
19+6*
N Attribute Linkage
MicroStation 95 Reference Guide 18-21

Line String (Type 4), Shape (Type 6), Curve (Type 11), and B-spline Pole Element (Type 21)
Fk,x, Fk,y, and Fk,z are cubic polynomials and Dk is the length of
segment k. In addition, the polynomial coefficients are functions
of the segment length and the endpoint derivatives of Fk,x, Fk,y,
and Fk,z. The subscript k is merely a reminder that these functions
depend on the segment.

The cubic polynomials are defined as follows:

Fk,x = axd
3 + bxd

2 + cxd + Xk

cx = tk

bx = [3(Xk+1–Xk)/Dk – 2tk,x – tk+1,x] / Dk

ax = [tk,x + tk+1,x – 2(xk+1–xk)/Dk] / Dk
2

The m variable is analogous to the slope of the segment.

If (|m
k+1,x

–m
k,x

| + |m
k-1,x

–m
k-2,x

|) ≠ 0, then:

tk,x = (mk-1,x|mk+1,x–mk,x| + mk,x|mk-1,x–mk-2,x|)/(|mk+1,x–mk,x| +
|mk-1,x–mk-2,x|)

else:

tk,x = (mk+1,x+mk,x) / 2

mk,x = (Xk+1 – Xk) / Dk

Fk,y(d) and Fk,z(d) are defined analogously.

X , Y , Z

F (d), F (d), F (d)

D

P

X , Y , Z

 X , Y , Z

k-1 k-1 k-1

k+1 k+1 k+1
 k k k

 k,x k,y k,z

d
Curve Definition
18-22 MicroStation 95 Reference Guide

Text Node Header (Type 7)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
Text Node Header (Type 7)
Text node header elements are complex headers for groups of
text elements, specifying the number of text strings, the line
spacing between text strings, the origin of the text node, the node
number, and the maximum number of characters in each text
string.

2D:

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
unsigned short totwords; /* total words following */
short numstrngs; /* # of text strings */
short nodenumber; /* text node number */
byte maxlngth; /* maximum length allowed */
byte maxused; /* maximum length used */
byte font; /* text font used */
byte just; /* justification type */
long linespc; /* line spacing */
long lngthmult; /* length multiplier */
long hghtmult; /* height multiplier */
long rotation; /* rotation angle */
Point2d origin; /* origin */
} Text_node_2d;

3D:

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
unsigned short totwords; /* total words following */
short numstrngs; /* # of text strings */
short nodenumber; /* text node number */
byte maxlngth; /* maximum length allowed */
byte maxused; /* maximum length used */
byte font; /* text font used */
byte just; /* justification type */
long linespc; /* line spacing */
long lngthmult; /* length multiplier */
long hghtmult; /* height multiplier */
long quat[4]; /* quaternion rotations */
Point3d origin; /* origin */
} Text_node_3d;
MicroStation 95 Reference Guide 18-23

Text Node Header (Type 7)
Text node number

Each text node is assigned a unique number (nodenumber).
This number is displayed at the node origin when node display is
on. Applications can use it to uniquely identify the node.

Line length

The user specifies the maximum number of characters
(maxlngth) in a line of text when the node is created. The
maximum used (maxused) line length indicates the number of
characters currently in the longest text line.

Justification and origin

The justification defines the position of text strings relative to the
origin. The origin retained in the design file is the true, user-
defined origin. The following justifications are possible:

Line spacing

This long integer indicates the number of UORs from the bottom
of a text string to the top of the next string.

Left/Top (0) Center/Top (6) Right margin/Top (9)

Left/Center (1) Center/Center (7) Right margin/Center (10)

Left/Bottom (2) Center/Bottom (8) Right margin/Bottom (11)

Left margin/Top (3) Right/Top (12)

Left margin/Center (4) Right/Center (13)

Left margin/Bottom (5) Right/Bottom (14)
18-24 MicroStation 95 Reference Guide

Text Node Header (Type 7)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
2D and 3D Text Node Headers
Wor

d
Offs
et

Wor
d

Offs
et

0-17 Header 0-17 Header
18 Words in Description text_node2d.totwords 18 Words in Description text_node3d.totwords

19 # Text Strings text_node2d.numstrings 19 # Text Strings text_node3d.numstrings

20 Text Node Number text_node2d.nodenumber 20 Text Node Number text_node3d.nodenumber

21 Max Used Max
Allowed text_node2d.maxlngth 21 Max Used Max

Allowed text_node3d.maxlngth

22 Justificatio
n Font text_node2d.font 22 Justificatio

n Font text_node3d.font

23
Line Spacing

text_node2d.linespc 23
Line Spacing

text_node3d.linespc

24 24
25

Length Multiplier
text_node2d.lngthmult 25

Length Multiplier
text_node3d.lngthmult

26 26
27

Height Multiplier
text_node2d.hghtmult 27

Height Multiplier
text_node3d.hghtmult

28 28
29

Rotation Angle
text_node2d.rotation 29 Rotation Quaternion

Q4
text_node3d.quat

30 30
31

X Origin
text_node2d.origin 31

Q1
32 32
33

Y Origin
33

Q2
34 34
35

Attribute Linkage
35

Q3
36
37

X Origin
text_node3d.origin

38
39

Y Origin
40
41

Z Origin
42
43

Attribute Linkage
MicroStation 95 Reference Guide 18-25

Complex Chain Headers (Type 12) and Complex Shape Headers (Type 14)
Complex Chain Headers (Type 12) and Complex Shape
Headers (Type 14)

Complex chains (open) and complex shapes (closed) are
complex elements formed from a series of elements (lines, line
strings, arcs, curves, and open B-Spline curves). A complex chain
or complex shape consists of a header followed by its component
elements. These structure of the header is identical for both
complex chains and complex shapes in 2D and 3D files. The
element is a complex shape if the endpoints of the first and last
component elements are the same.

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
unsigned short totlength; /* total length of surface */
unsigned short numelems; /* # of elements in surface

*/
short attributes[4]; /* to reach min. element size

*/
} Complex_string;

Four words of attribute data are included in complex chains and
shapes to ensure that they are at least 24 words long, which is the
minimum element length required for some Intergraph file
processors.

Complex Chain and Complex Shape Headers
Word
Offset

0-17 Header
18 Words in Description complex_string.totlngth

19 Number of Elements complex_string.numelems

20
Four Byte
Attribute
Linkage

complex_string.attributes

21
22
23
24

Attribute Linkage
18-26 MicroStation 95 Reference Guide

Ellipse Elements (Type 15)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
Ellipse Elements (Type 15)
Ellipse elements are specified with a center, rotation angle, and
major and minor axes. A circle is an ellipse with the major and
minor axes equal. The ellipse element is defined in C as follows:

2D:

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
double primary; /* primary axis */
double secondary; /* secondary axis */
long rotation; /* rotation angle */
Dpoint2d origin; /* origin */
} Ellipse_2d;

3D:

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
double primary; /* primary axis */
double secondary; /* secondary axis */
long quat[4]; /* quaternion rotations */
Dpoint3d origin; /* origin */
} Ellipse_3d;

Primary and secondary axes

Ellipse axes are defined by two double-precision floating point
values that specify the lengths in UORs of the semi-major and
semi-minor axes. The primary axis is not necessarily the longest
(semi-major) axis, but rather is the axis whose orientation is
specified by the rotation angle or quaternion.

Orientation

The rotation angle or quaternion defines the orientation of the
primary axis with respect to the design file coordinate system.

Origin

The origin (center) of the ellipse is expressed as double-precision
floating point coordinates.
MicroStation 95 Reference Guide 18-27

Ellipse Elements (Type 15)
2D and 3D Ellipse Element
Word
Offset

Word
Offset

0-17 Header 0-17 Header
18

Primary Axis

ellipse_2d.primary 18

Primary Axis

ellipse_3d.primary

19 19
20 20
21 21
22

Secondary Axis

ellipse_2d.secondary 22

Secondary Axis

ellipse_3d.secondary

23 23
24 24
25 25
26

Rotation Axis
ellipse_2d.rotation 26 Rotation Quaternion

Q4
ellipse_3d.quat

27 27
28

X Origin

ellipse_2d.origin 28
Q1

29 29
30 30

Q2
31 31
32

Y Origin

32
Q3

33 33
34 34

X Origin

ellipse_3d.origin

35 35
36

Attribute Linkage
36
37
38

Y Origin
39
40
41
42

Z Origin
43
44
45
46

Attribute Linkage

Ellipse Parameters
18-28 MicroStation 95 Reference Guide

Arc Elements (Type 16)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
Arc Elements (Type 16)
Arc elements are defined by the center, the rotation, start, and
sweep angles, and the major and minor axes. The C structure
definitions are as follows:

2D:

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
long startang; /* start angle */
long sweepang; /* sweep angle */
double primary; /* primary axis */
double secondary; /* secondary axis */
long rotation; /* rotation angle */
Dpoint2d origin; /* origin */
} Arc_2d;

3D:

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
long startang; /* start angle */
long sweepang; /* sweep angle */
double primary; /* primary axis */
double secondary; /* secondary axis */
long quat[4]; /* quaternion rotations */
Dpoint3d origin; /* origin */
} Arc_3d;
MicroStation 95 Reference Guide 18-29

Arc Elements (Type 16)
Arc parameters

Parameter: Description

Primary and
secondary axes

Defined by two double-precision floating point
values that specify the lengths in UORs of the semi-
major and semi-minor axes. The primary axis is not
necessarily the longest (semi-major) axis, but the
axis whose orientation is specified by the rotation
angle or quaternion.

Orientation Rotation angle or quaternion defines the orientation
of the primary axis with respect to the design file
coordinate system.

Origin (center) Expressed as double-precision floating point
coordinates. The center itself need not be within the
design plane although the entire arc definition must
be within the design plane.

Start angle Expressed in the same format as a 2D rotation angle.
It defines the counterclockwise angle in the plane of
the arc from the primary axis to the starting point of
the arc on a unit circle.

Sweep angle Represents the sweep of the arc along a unit circle. It
is in the same format as a 2D rotation angle except
that the sign bit indicates the direction of sweep,
0=counterclockwise, 1=clockwise. Note that
MicroStation interprets the special case of a 0° sweep
angle as a 360° sweep angle.

Arc parameters
18-30 MicroStation 95 Reference Guide

Arc Elements (Type 16)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
2D and 3D Arc Element
Word
Offset

Word
Offset

0-17 Header 0-17 Header
18

Start Angle
arc_2d.startang 18

Start Angle
arc_3d.startang

19 19
20

Sweep Angle
arc_2d.sweepang 20

Sweep Angle
arc_3d.sweepang

21 21
22

Primary Axis

arc_2d.primary 22

Primary Axis

arc_3d.primary

23 23
24 24
25 25
26

Secondary Axis

arc_2d.secondary 26

Secondary Axis

arc_3d.secondary

27 27
28 28
29 29
30

Rotation Angle
arc_2d.rotation 30 Rotation Quaternion

Q4
arc_3d.quat

31 31
32

X Origin

arc_2d.origin 32
Q1

33 33
34 34

Q2
35 35
36

Y Origin

36
Q3

37 37
38 38

X Origin

arc_3d.origin

39 39
40

Attribute Linkage
40
41
42

Y Origin
43
44
45
46

Z Origin
47
48
49
50

Attribute Linkage
MicroStation 95 Reference Guide 18-31

Text Elements (Type 17)
Text Elements (Type 17)
A text element stores a single line of text. The C structures are as
follows.

2D:

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
byte font; /* text font used */
byte just; /* justification type */
long lngthmult; /* length multiplier */
long hghtmult; /* height multiplier */
long rotation; /* rotation angle */
Point2d origin; /* origin */
byte numchars; /* # of characters */
byte edflds; /* # of enter data fields */
char string[1]; /* characters */
} Text_2d;

3D:

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
byte font; /* text font used */
byte just; /* justification type */
long lngthmult; /* length multiplier */
long hghtmult; /* height multiplier */
long quat[4]; /* quaternion angle */
Point3d origin; /* origin */
byte numchars; /* # of characters */
byte edflds; /* # of enter data fields */
char string[1]; /* characters */
} Text_3d;
18-32 MicroStation 95 Reference Guide

Text Elements (Type 17)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
These parameters define the text.

Parameter: Description

Font A single byte is used to store the font for a text element. This number
corresponds to the appropriate font definition in the font library.

Length and height
multipliers

The basic character size is 6 UORs wide and 6 UORs high (4 UORs of
width and 2 of spacing). The length and height multipliers specify the
scale factors to be applied to the basic character size to determine the
true size of the text string. The multipliers are stored as long integers
with the lower order bit set. Mirrored text is identified by a negative h
multiplier.
The maximum multiplier value is 2,147,483.648 (231/1000). The
maximum text size is therefore 12,884,898 UORs (6 × 2,147,483.648).

Orientation The rotation angle or quaternion defines the orientation of a text
element relative to the design file coordinate system.

Justification and
origin

At the time of placement, the active text justification determines how
text is positioned about the user-defined origin. The origin stored in a
text element is always the lower left of the text element. It is
necessary to use the justification value to compute the user-defined
origin. There are nine possible justifications for text elements:

Enter data fields Areas within a text element that can be easily modified by the user.
Each enter data field in a text string is specified by three bytes
appended to the element. The first byte specifies the character
number in the string (relative to 1) that is the first character in the
enter data field. The second byte specifies the number of characters in
the field. The third byte defines the justification of the non-blank
characters within the field (-1=left, 0=center, +1=right). Note that if the
number of characters is odd, the first enter data field specification
does not lie on a word boundary, and if there are no enter data fields,
there are no specification bytes.

Left/Top (0) Center/Top (6) Right/Top (12)

Left/Center(1) Center/Center (7) Right/Center (13)

Left/Bottom(2) Center/Bottom (8) Right/Bottom (14)
MicroStation 95 Reference Guide 18-33

Text Elements (Type 17)
2D and 3D Text Elements
Word
Offset

Word
Offset

0-17 Header 0-17 Header
18 text_2d.font 18 text_3d.font

19
Length Multiplier

text_2d.lngthmult 19
Length Multiplier

text_3d.lngthmult

20 20
21

Height Multiplier
text_2d.hghtmult 21

Height Multiplier
text_3d.hghtmult

22 22
23

Rotation Angle
text_2d.rotation 23 Rotation Quaternion

Q4
text_3d.rotation

24 24
25

X Origin
text_2d.origin 25

Q1
26 26
27

Y Origin
27

Q2
28 28
29 # Ed Fields — # Chars text_2d.numchars 29

Q3
30 Char 2 — Char 1 text_2d.string[0] 30
31 Char 4 — Char 3 31

X Origin
text_3d.origin

32
33

Y Origin
30+(N-1)/2 Char N — Char N-1 34
31+(N-1)/2 Len Ed #1 — Start Ed #1 35

Z Origin
32+(N-1)/2 Start Ed #2 — Just Ed #1 36

37 # Ed Fields — # Chars text_3d.numchars

38 Char 2 — Char 1 text_3d.string[0]

Attribute Linkage
39 Char 4 — Char 3

38+(N-1)/2 Char N — Char N-1
39+(N-1)/2 Len Ed #1 — Start Ed #1
40+(N-1)/2 Start Ed #2 — Just Ed #1

Attribute Linkage
18-34 MicroStation 95 Reference Guide

3D Surface Header (Type 18) and 3D Solid Header (Type 19)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
3D Surface Header (Type 18) and 3D Solid Header (Type 19)
A surface or solid is a complex 3D element that is projected or
rotated from a planar boundary element (line, line string, curve,
arc, or ellipse). The surface or solid header precedes an ordered
set of primitive elements that define boundaries, cross sections
and rule lines.

A solid (type 19) is capped at both ends — it encloses a volume.
A surface (type 18) is not capped on the ends — it encloses no
volume. Surface and solid headers are identical except for their
type number. The C definition is as follows:

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
unsigned short totlength; /* total length of

surface */
unsigned short numelems; /* # of elements in

surface */
byte surftype; /* surface type */
byte boundelms; /* # of boundary

elements-1 */
#ifdefunix

short filler
#endif

short attributes[4]; /* unknown attribute
data */

} Surface;

Method of creation
Each surface or solid header has a type number describing its
method of creation.

For surfaces, the following values are used.

0=Surface of projection

1=Bounded Plane

2=Bounded Plane

3=Right circular cylinder

4=Right circular cone

5=Tabulated cylinder

6=Tabulated cone
MicroStation 95 Reference Guide 18-35

3D Surface Header (Type 18) and 3D Solid Header (Type 19)
7=Convolute

8=Surface of revolution

9=Warped surface

For solids (capped surfaces), the following values are used.

0=Volume of projection

1=Volume of revolution

2=Volume defined by boundary elements

Elements in surfaces and solids
Any line, line string, curve, arc, or ellipse can be a boundary
element of a surface or solid. A complex element cannot be a
component of a surface or solid. Rule elements are restricted to
lines and arcs.

Elements are stored in a surface or solid in a strict order.
Boundary elements (class=0) appear first after the surface/solid
header. The second boundary element immediately follows the
first boundary and is followed by any rule lines connecting the
first and second boundary. If additional boundary elements are
included they should follow this same pattern with the boundary
elements preceding the rule lines that connect it to the previous
boundary.

Solid or Surface Elements
Word
Offset

0-17 Header
18 Words in Description surface.totlngth

19 Number of Elements surface.numelems

20 Surface Type surface.type

21
Attribute Linkage
18-36 MicroStation 95 Reference Guide

Point String Elements (Type 22)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
Point String Elements (Type 22)
A point string element consists of a number of vertices with
orientations defined at each vertex. They are useful in specialized
applications that need to specify orientations as well as point
locations, such as a “walk through.”

Point strings can be defined as either contiguous or disjoint.
Contiguous point strings are displayed with lines connecting the
vertices. Disjoint point strings are displayed as a set of discrete
points. Both types are placed and manipulated in the same way,
but exhibit slightly different characteristics when snapping or
locating.

It is impossible to define a point string structure in C because all
point locations are stored before any of the orientations.

Description

Range The range of the point string element is the range
of the points.

Properties The H-bit (bit 15) of the properties word indicates
the type of point string (0 = continuous, 1 =
disjoint) for display purposes. The setting of the
planar bit indicates whether the points are
coplanar.

Number of points The maximum number of vertices allowed in a
single point string is 48. A longer series of points is
formed by combining multiple elements in a
complex chain.

Point coordinates An array contains the X and Y coordinates for 2D
points or the X, Y, and Z coordinates for 3D points
as integer values.

Point orientations An array contains the rotation matrices (2D) or
quaternions (3D) describing the points’
orientations with respect to the drawing axes. The
coefficients of the matrices, as well as the
quaternions, lie within the range of –1 to 1. These
values are stored as signed double-precision
integers with the low-order bit equal to 1/(2

31–1).
Therefore, to convert these coefficients to floating
point, the integers must be divided by 231-1.
MicroStation 95 Reference Guide 18-37

Point String Elements (Type 22)
2D and 3D Point String Elements
Word
Offset

Word
Offset

0-17 Header 0-17 Header
18 18 Number of Vertices
19

X1
19

X1
20 20
21

Y1
21

Y1
22 22
23

X2
23

Z1
24 24
25

Y2
25

X2
26 26
27 27

Y2
28
29

Z215+4*
N XN

30

16+4*
N
17+4*
N YN
18+4*
N
19+4*
N Transformation Matrix

T11 (1)

13+6*
N XN
14+6*
N

T12 (1)

15+6*
N YN
16+6*
N

T21(1)

17+6*
N ZN
18+6*
N

T22 (1)
19+6*
N Quaternions

Q11 (1)

Q12 (1)

Q21 (1)
T11 (N)

Q22 (1)
T12 (N)

T21 (N)

T22 (N) Q11 (N)

Attribute Linkage

Q12 (N)

Q21 (N)

Q22 (N)

Attribute Linkage
18-38 MicroStation 95 Reference Guide

Cone Elements (Type 23)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
Cone Elements (Type 23)
A circular truncated cone is described by two circles lying in
parallel planes in a 3D design file. If the radius of both circles is
identical, the cone represents a cylinder. The cone can be skewed
by adjusting the positions of the circles. The C structure is:

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
short unknown; /* unknown data */
long quat[4]; /* orientation quaternion */
Dpoint3d center_1; /* center of first circle */
double radius_1; /* radius of first circle */
Dpoint3d center_2; /* center of second circle */
double radius_2; /* radius of second circle */
} Cone_3d;

Cone type
The cone type word describes characteristics of the cone. Valid
cone types include:

• 0 = general (nonspecific) cone

• 1 = right cylinder

• 2 = cylinder

• 3 = right cone

• 4 = cone

• 5 = right truncated cone

• 6 = truncated cone

Bits 3-14 of the cone type word are reserved and should be set to
zero. Bit 15 indicates whether the cone is a surface or a solid
(0=solid, 1=surface).

Parameters

Name: Description:

Orientation The orientation for both circles is defined by a single
set of quaternions.

Radii The radii for the circles are stored as double-precision
floating point values. Either of these values may be
zero to cause a pointed cone.
MicroStation 95 Reference Guide 18-39

Cone Elements (Type 23)
Cone Elements
Word
Offset

0-17 Header
18 cone.rsrv

19 Quaternion
Q4

cone.quat

20
21

Q1
22
23

Q2
24
25

Q3
26
27

X1

cone.center 1

28
29
30
31

Y1
32
33
34
35

Z1
36
37
38
39

R1

cone.radius 1

40
41
42
43

X2

cone.center 2

44
45
46
47

Y2
48
49
50
51

Z2
52
53
54
55

R2

cone.radius 2

56
57
58
59

Attribute Linkage
18-40 MicroStation 95 Reference Guide

B-spline Elements (Type 21, 24, 25, 26, 27, 28)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
B-spline Elements (Type 21, 24, 25, 26, 27, 28)
Rational, non-rational, uniform, and non-uniform B-spline curves
and surfaces are represented in the design file by several different
element types.

B-spline curves
Four element types are used to represent B-spline curves. A B-
spline Curve Header Element (type 27) stores curve parameters. A
B-spline Pole Element (type 21) stores poles. If the B-spline curve
is rational, the pole element is immediately followed by a B-spline
Weight Factor Element (type 28) that stores the weights of the
poles. If the B-spline curve is non-uniform, the knots are stored in
a B-spline Knot Element (type 26) immediately following the
header. The order of these elements is fixed and is:

1. B-spline Curve Header Element (type 27)

2. Optional: B-spline Knot Element (type 26) if the curve is non-
uniform

3. B-spline Pole Element (type 21)

4. Optional: B-spline Weight Factor Element (type 28) if the curve
is rational

B-spline surfaces
Five element types are used to represent B-spline surfaces. A B-
spline Surface Header Element (type 24) stores surface
parameters. Subsequent B-spline Pole Elements (type 21) store
separate rows of poles. If the surface is rational, each pole
element is immediately followed by a B-spline Weight Factor
Element (type 28). If the surface is non-uniform, a B-spline Knot
Element (type 26) immediately follows the header. Finally, if the
surface is trimmed, one or more B-spline Surface Boundary
Elements (type 25) precede the first pole element. The order of
these elements is fixed and must follow the order specified
below:

1. Uniform, non-rational surfaces (type 24, 21, 21, 21…)

2. Uniform, rational surfaces (type 24, 21, 28, 21, 28, 21, 28…)

3. Non-uniform, non-rational (type 24, 26, 21, 21, 21…)

4. Non-uniform, rational (type 24, 26, 21, 28, 21, 28, 21, 28…)
MicroStation 95 Reference Guide 18-41

B-spline Elements (Type 21, 24, 25, 26, 27, 28)
5. Boundary immediately precedes poles (all type 25s must
precede type 21, but follow type 26, if present. The order of the
elements is fixed and can be either:

type 24, 25, 25, 25, …, 21, 21, 21… or
type 24, 25, 25, 25, …, 21, 28, 21, 28… or
type 24, 26, 25, 25, 25, …, 21, 21, 21… or
type 24, 26, 25, 25, 25, …, 21, 28, 21, 28…

B-spline curve header (type 27)
A B-spline curve header begins the definition of a B-spline curve
and defines parameters describing the curve.

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
long desc_words; /* # of words in descr. */
struct

{
unsigned order:4; /* B-spline order - 2 */
unsigned curve_display:1; /* curve display flag */
unsigned poly_display:1; /* polygon display flag */
unsigned rational:1; /* rationalization flag */
unsigned closed:1; /* closed curve flag */
unsigned curve_type:8; /* curve type */
} flags;

short num_poles; /* number of poles */
short num_knots; /* number of knots */
} Bspline_curve;

Range

The range of a B-spline curve is the range of the control polygon.
All points on the stroked curve lie within this range.

Curve parameters

A word of data is included that contains various parameters. A
number two less than the B-spline order is stored in bits 0-3. Bit 7
is set for closed curves and cleared for open curves. Bit 6 is set for
rational B-splines and cleared for non-rational splines. If bit 6 is
set, a weight factor element must be included. Bit 5 is set to
indicate if display of the polygon is enabled; bit 4 is set if curve
display is enabled.
18-42 MicroStation 95 Reference Guide

B-spline Elements (Type 21, 24, 25, 26, 27, 28)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
Number of poles

The maximum number of poles is 101.

Number of knots

For uniform B-spline curves, the number of knots is 0. The
number of knots stored in the type 26 element for non-uniform B-
spline curves is calculated as follows:

B-spline surface header (type 24)
A B-spline surface header begins the definition of a B-spline
surface and defines parameters describing the surface.

typedef struct bspline_surface
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
long desc_words; /* # words in

description */
struct

{
unsigned order:4; /* B-spline U order - 2 */
unsigned curve_display:1; /* surface display flag */
unsigned poly_display:1; /* polygon display flag */
unsigned rational:1; /* rationalization flag */
unsigned closed:1; /* closed U surface flag*/
unsigned curve_type:8; /* surface type */
} flags;

short num_poles_u; /* number of poles */
short num_knots_u; /* number of knots */
short rule_lines_u; /* number of rule lines */
struct

#KNOTS = #POLES - ORDER (open curves)

#KNOTS = #POLES -1 (closed curves)

B-spline Curve Header
Word
Offset

0-17 Header
18

Words in Description
Bspline_curve.dhdr.totlngth

19
20 Bspline_curve.flags

21 Number of Poles Bspline_curve.num_poles

22 Number of Knots Bspline_curve.num_knots

23
Attribute Linkage
MicroStation 95 Reference Guide 18-43

B-spline Elements (Type 21, 24, 25, 26, 27, 28)
{
unsignedshort v_order:4; /* B-spline order - 2

 (v Direction) */
short reserved1:2; /* reserved */

unsigned short arcSpacing:1; /* rule lines spaced by
 arc length */

unsigned short v_closed:1; /*closed curve flag */
unsigned short reserved2:8; /* reserved */
} bsurf_flags;

short num_poles_v; /* number of poles */
short num_knots_v; /* number of knots */
short rule_lines_v; /* number of rule lines */
short num_bounds; /* number of boundaries */
} Bspline_surface;

Range

The range of a B-spline surface is the range of the control
polygon. All points on the stroked surface lie within this range.

Surface parameters in U direction

A word of data is included that contains various parameters of the
surface in the U direction. Parameters in the V direction are stored
in a different word. A number two less than the B-spline U order
is stored in bits 0-3. Bit 7 is set for surfaces closed in U and
cleared for surfaces open in that direction. Bit 6 is set for rational
B-splines and cleared for non-rational B-splines. If bit 6 is set, a
weight factor element must follow every pole element. Bit 5 is set
to indicate if display of the polygon is enabled; bit 4 is set if the
surface display is enabled.

Number of poles in U direction

The maximum number of poles is 101 for each row of the surface,
as each row is stored in a separate type 21 B-spline Pole element.
18-44 MicroStation 95 Reference Guide

B-spline Elements (Type 21, 24, 25, 26, 27, 28)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
Number of knots in U direction

For uniform B-spline surfaces, the number of stored knots is 0.
The number of knots stored in the type 26 element for non-
uniform B-spline surfaces is the sum of the number of knots in
the U direction plus the number of knots in the V direction. The
number of knots in the U direction is calculated as follows:

Number of rules in U direction

The maximum number of rule lines is 256 for each direction of a
B-spline surface.

Surface parameters in V direction

A word of data is included that contains various parameters of the
surface in the V direction. Parameters in the U direction are stored
in a different word. A number two less than the B-spline V order
is stored in bits 0-3. Bit 7 is set for surfaces closed in V and
cleared for surfaces open in that direction. Bit 6 is set if the rule
lines are to be displayed spaced evenly by arc length. It is cleared
if the rule line is to be spaced evenly throughout the parameter
interval 0.0 to 1.0. The other bits in this word are reserved at this
time.

Number of poles in V direction

The is no limit to the number of poles in the V direction of the
surface, as each row is stored in a separate type 21 B-spline Pole
element. Each row can contain a maximum of 101 poles.

Number of knots in V direction

For uniform B-spline surfaces, the number of stored knots is 0.
The number of knots stored in the type 26 element for non-
uniform B-spline surfaces is the sum of the number of knots in
the U direction plus the number of knots in the V direction. The
number of knots in the V direction is calculated as follows:

Number of rules in V direction

The maximum number of rule lines is 256 for each direction of a
B-spline surface.

#KNOTS_U = #POLES_U - ORDER_U (surfaces open in U)

#KNOTS_U = #POLES_U -1 (surfaces closed in U)

#KNOTS_V = #POLES_V - ORDER_V (surfaces open in V)

#KNOTS_V = #POLES_V -1 (surfaces closed in V)
MicroStation 95 Reference Guide 18-45

B-spline Elements (Type 21, 24, 25, 26, 27, 28)
Number of boundaries

The total number of boundaries in the surface is stored in this
word. This may differ from the total number of type 25 boundary
elements stored with the surface as a single boundary may
require more than one type 25 element to represent it.

Sense (Inner/Outer) of the boundaries

If the surface contains boundaries, the
Bspline_surface.dhdr.props.b.h bit of the display header
determines whether the area inside
(Bspline_surface.dhdr.props.b.h is FALSE) or outside
(Bspline_surface.dhdr.props.b.h is TRUE) of the boundaries is to
be removed from the surface. This flag corresponds to the
holeOrigin flag of the MSBsplineSurface data structure.

3D B-spline Surface Header
Word
Offset

0-17 Header
18 Boundary Number Bsurf_boundary.number

19 Number of Vertices Bsurf_boundary.numverts

20
X1

Bsurf_boundary.vertices[0]

21
22

Y1
23
24

X2
25
26

Y2
27

16+4*N
XN

Bsurf_boundary.vertices[n-1]

17+4*N

18+4*N
YN

18+4*N

19+4*N
Attribute Linkage
18-46 MicroStation 95 Reference Guide

B-spline Elements (Type 21, 24, 25, 26, 27, 28)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
B-spline pole element (type 21)
(See “Line String (Type 4), Shape (Type 6), Curve (Type 11), and
B-spline Pole Element (Type 21)” on page 18-20.)

B-spline surface boundary element (type 25)
The format of the B-spline Surface Boundary element is as
follows.

typedef struct bsurf_boundary
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
short number; /* boundary number */
short numverts; /* number of boundary vertices */
Point2d vertices[1]; /* boundary points (in UV space)*/
} Bsurf_boundary;

Boundary number

This word indicates which boundary of the surface is being
represented by this type 25 element. Subsequent type 25 elements
may be used to define a single surface boundary by sharing the
same boundary number. For example, the first and second type
25 elements in a surface may have a boundary number of 1
assigned to them, while the third, fourth, and fifth type 25
elements may have the boundary number 2 assigned to them. The
represented surface would have two boundaries, one defined by
two elements, the other defined by three.

Number of points

This word contains the number of points in this boundary
element. The maximum number of points in any single boundary
element is 151.

Vertices

The coordinates of the points defining the boundary element are
stored as double-precision integer values in the U-V parameter
space of the surface with the low order bit equal to 1⁄(231-1).
MicroStation 95 Reference Guide 18-47

B-spline Elements (Type 21, 24, 25, 26, 27, 28)
Only integers between 0 and 231-1 are acceptable, giving an
effective range of 0.0 to 1.0 in both coordinates.

B-spline Knot element (type 26)
The format of the B-spline Knot element is displayed below.

typedef struct bspline_knot
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
long knots[1]; /* knots (variable length) */
} Bspline_knot;

Knots

For non-uniform B-spline curves and surfaces, the values of the
interior non-uniform knots are stored as double-precision integers
with the low order bit equal to 1⁄(231-1). Only integers between 0
and 231-1 are acceptable, giving an effective range of 0.0 to 1.0 for
the interior knot values. For non-uniform surfaces, all the

B-spline Surface Boundary
Word
Offset

0-17 Header
18 Boundary Number Bsurf_boundary.number

19 Number of Vertices Bsurf_boundary.numverts

20
X1

Bsurf_boundary.vertices[0]

21
22

Y1
23
24

X2
25
26

Y2
27

16+4*N
XN

Bsurf_boundary.vertices[n-1]

17+4*N

18+4*N
YN

18+4*N

19+4*N
Attribute Linkage
18-48 MicroStation 95 Reference Guide

B-spline Elements (Type 21, 24, 25, 26, 27, 28)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
interior knots in the U direction are stored before the interior
knots in the V direction.

B-spline Weight Factor element (type 28)
The format of the B-spline Weight Factor element is:

typedef struct bspline_weight
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
long weights[1]; /* weights (variable length) */
} Bspline_weight;

Knots

For rational B-spline curves and surfaces, the values of the pole
weights are stored as double-precision integer values with the
low order bit equal to 1⁄(231-1). Only integers between 0 and
231-1 are acceptable, giving an effective range of 0.0 to 1.0 for the
weight values. For rational surfaces, each type 21 pole element

B-spline Knot
Word
Offset

0-17 Header
18

K1
Bspline_knot.knots[0]

19
20

K2
21

16+2*N
KN

Bspline_knot.knots[n-1]

16+2*N

18+2*N
Attribute Linkage
MicroStation 95 Reference Guide 18-49

Raster Header Element (Type 87)
must be followed by a weight factor element giving the weights
of that row of poles.

Raster Header Element (Type 87)
Raster data consists of a complex raster header followed by
scanline data in raster data elements (type 88). The header
element contains the orientation of the image in the design file as
well as data format information. The only difference between 2D
and 3D raster header elements is the format of the vertices of the
clipping polygon.

2D

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
unsigned long totlength; /* total length of cell */
Raster_flags flags; /* misc. raster data*/
byte foreground;
byte background;
unsigned short xextent;
unsigned short yextent;
short reserved[2];
double resolution;
double scale;
Point3d origin;
unsigned short numverts;

B-spline Weight Factor Element
Word
Offset

0-17 Header
18

W1
Bspline_weight.weights[0]

19
20

W2
21

16+2*N
WN

Bspline_weight.weights[n-1]

17+2*N

18+2*N
Attribute Linkage
18-50 MicroStation 95 Reference Guide

Raster Header Element (Type 87)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
Point2d vert2d[1];
} Raster_hdr2d;

3D

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
unsigned long totlength; /* total length of cell */
Raster_flags flags; /* misc. raster data */
byte foreground;
byte background;
unsigned short xextent;
unsigned short yextent;
short reserved[2];
double resolution; /* currently unused */
double scale;
Point3d origin;
unsigned short numverts;
Point3d vert3d[1];
} Raster_hdr3d;

The raster flags are described in a C structure as follows:

typedef struct
{
unsigned right:1;
unsigned lower:1;
unsigned horizontal:1;
unsigned format:5;
unsigned color:1; /* not used by MicroStation

*/
unsigned transparent:1;
unsigned positive:1; /* not used by MicroStation

*/
unsigned unused:5;
} Raster_flags;

Justification

The justification of a raster element indicates which corner of the
element is the origin and the direction of the scan lines. Currently
MicroStation supports only raster elements with upper left
justification and horizontal scan lines.

Format

MicroStation currently supports three raster formats. Format 1 is
straight binary with a single bit for each pixel and format 9 is run
MicroStation 95 Reference Guide 18-51

Raster Header Element (Type 87)
length encoded binary. For formats 1 and 9, a foreground and
background color is stored in the element and used to determine
the color for pixel values of one and zero, respectively. Format 2
stores a byte for each pixel and is used to store color images.

Transparent background

If the transparent bit is set, a raster element has a transparent
background and pixels are not set if they are set to the
background color.

Background and foreground colors

For format 1 (binary) and 9 (run length binary), the foreground
and background colors indicate the color indexes for pixel values
of 0 and 1, respectively.

Pixel extents

The x pixel extent is the number of pixels in the raster image
along the x axis, and the y pixel extent is the number of pixels
along the y-axis.

Device resolution

Unused; reserved for future use.

Pixel to UOR conversion factor

The number of UORs per pixel.

UOR origin

This defines the relative position of the raster image in the design
file. It is the coordinate of the origin of the raster data.

Clip box

The clip box for a raster element is drawn prior to the display of
the raster data but does not currently affect the raster data display.
18-52 MicroStation 95 Reference Guide

Raster Header Element (Type 87)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
The display of the clipping box can be omitted by setting the
number of vertices to zero.

Raster Header Element
Word
Offset

0-17 Header
18

Words in Description
raster_hdr.totlngth

19
20 raster_hdr.raster_flags

21 raster_hdr.foreground.background

22 X Pixel Extent raster_hdr.xextent

23 Y Pixel Extent raster_hdr.yextent

24
Reserved

raster_hdr.reserved

25
26

Resolution

raster_hdr.resolution

27
28
29
30

Scale

raster_hdr.scale

31
32
33
34

X Origin
35
36

Y Origin
37
38

Z Origin
39
40 Number of Vertices raster_hdr.numverts

41
X1

raster_hdr.vertice(0)

42
43

Y1
44
45

X2
46
47

Y2
48

37+4*N
XN

38+4*N

39+4*N
YN

40+4*N

41+4*N
Attribute Linkage
MicroStation 95 Reference Guide 18-53

Raster Data Elements (Type 88)
Raster Data Elements (Type 88)
A scan line element contains the pixel information for all or part
of a single scan line of raster data. Scan line elements have the
same format for the first 18 words. They differ in the actual data
stored. The size of an element is limited to 768 words.

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
Raster_flags flags; /* flags */
byte foreground;
byte background;
unsigned short xoffset;
unsigned short yoffset;
unsigned short numpixels;
byte pixel[1];
} Raster_comp;

Range

The range block for the scanline includes the spacing around the
pixels. Thus, if the pixel to UOR scale is 10, there are 5 pixels in
the scanline, and the origin is (0,0), the range is (-5,-5) to (45,5).

Pixel offset

These are the x and y pixel offsets from the origin. Thus, for a
raster image with upper left origin and horizontal scanlines, an
offset of (0,2) represents the first pixel of the third scanline.

Number of pixels

The number of pixels in the element.

Pixel data

The data that determines the color of each pixel can be stored in
several formats. The same format must be used for each scanline
in a raster element. The formats supported as of this writing are:

• Bitmap, or straight binary (type 1) — Each bit defines the
color of one pixel. If the bit is set, the foreground color is
used; if the bit is clear, the background color is used.

• Byte (type 2) — Each byte defines the color of one pixel.

• Run length binary (type 9) — Each word contains a run
length (number of pixels). The first value is considered to be
“off” so each pixel in the first run length is displayed in the
18-54 MicroStation 95 Reference Guide

Group Data Elements (Type 5)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
background color. The next value is “on” so each pixel in the
second run length is displayed in the foreground color, etc.

Group Data Elements (Type 5)
Type 5 elements are commonly referred to as group data
elements. They store non-graphic data such as reference file
attachments and named views. The different type 5 elements are
distinguished by level. The type 5 elements used by MicroStation
and also supported by IGDS are documented in this section.

Reference file attachment element (type 5, level 9)
Type 5 reference file attachment elements are stored on level 9.
They contain all the information necessary to define a single
reference file attachment. The C structure is:

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /*display header */
short file_chars; /* no. of chars. in file spec */
char file_spec[65] /*file specification */
byte file_num; /* file number */
Fb_opts fb_opts; /* file builder options mask */
Fd_opts fd_opts; /* file displayer options mask*/
byte disp_flags[16]; /* display flags */
short lev_flags[8][4]; /* level on/off flags */
long ref_org[3]; /* origin in ref file uors */
double trns_mtrx[9]; /* transformation matrix */
double cnvrs_fact; /* conversion factor */

Raster Data Element
Word
Offset

0-17 Header
18 raster_comp.raster_flags

19 raster_comp.foreground.background

20 X Pixel Offset raster_comp.xoffset

21 Y Pixel Offset raster_comp.yoffset

22 Number of Pixels raster_comp.numpixels

23 raster_comp.pixel

Attribute Linkage
MicroStation 95 Reference Guide 18-55

Group Data Elements (Type 5)
long mast_org[3]; /* origin in master file uors */
short log_chars; /* characters in logical name */
char log_name[22]; /* logical name (padded) */
short desc_chars; /* characters in description */
char description[42]; /* description (padded) */
short lev_sym_mask; /* level symbology enable mask*/
short lev_sym[63]; /* level symbology descriptor */
long z_delta; /* Z-direction delta */
short clip_vertices; /* clipping vertices */
Point2d clip_poly[1]; /* clipping polygon */
} Ref_file_type5;

typedef struct
{
unsigned multi_attach:1; /* multi-attach */
unsigned one_one_map:1; /* 1:1 mapping */
unsigned slot_in_use:1; /* slot in use */
unsigned upd_fildgn:1; /* update on file design */
unsigned db_diff_mf:1; /* database dif than mas file */
unsigned snap_lock:1; /* snap lock */
unsigned locate_lock:1; /* locate lock */
unsigned missing_file:1; /* missing file */
unsigned unused:8; /* unused */
} Fb_opts;

typedef struct
{
unsigned view_ovr:1; /* view override */
unsigned display:1; /* display */
unsigned line_width:1; /* lines with width */
unsigned unused:13; /* unused */
} Fd_opts;

For information about the MicroStation reference file attachment
element (type 66, level 5) and when a reference file attachment
must be stored as that type rather than a type 5, see “MicroStation
Application Elements (Type 66)” on page 18-58.
18-56 MicroStation 95 Reference Guide

Group Data Elements (Type 5)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
Named view element (type 5, level 3)
Type 5 elements on level 3 are used to store named views. A
named view is created when the SAVE VIEW command is
executed.

typedef struct
{
Elm_hdr ehdr; /* element header */
short grphgrp; /* graphics group number */
short attindx; /* words between this and

attributes */
short properties; /* property bits

(always same) */
unsigned num_views:3; /* number of views */
unsigned reserved:13; /* reserved for Intergraph */
char viewdef_descr[18]; /* view definition descr. */
byte full_scr1;
byte full_scr2;
Viewinfo view[1];
char rest_of_elem[1]; /* record has variable len.

*/
}Named_view_type5;

typedef struct
{
unsigned fast_curve:1; /* fast curve display */
unsigned fast_text:1; /* fast text */
unsigned fast_font:1; /* fast font text */
unsigned line_wghts:1; /* line weights */
unsigned patterns:1; /* pattern display */
unsigned text_nodes:1; /* text node display */
unsigned ed_fields:1; /* enter data field

underlines */
unsigned on_off:1; /* view on or off */
unsigned delay:1; /* delay on */
unsigned grid:1; /* grid on */
unsigned lev_symb:1; /* level symbology */
unsigned points:1; /* points */
unsigned constructs:1; /* line constructs */
unsigned dimens:1; /* dimensioning */
unsigned fast_cell:1; /* fast cells */
unsigned def:1;
} Viewflags;

typedef struct
{
Viewflags flags; /* view flags */
MicroStation 95 Reference Guide 18-57

MicroStation Application Elements (Type 66)
short levels[4]; /* active levels (64 bit
array) */

Point3d origin; /* origin (made up of longs)
*/

Upoint3d delta; /* delta to other corner of
view*/

double transmatrx[9]; /* view transformation matrix
*/

double conversion; /* conv. from digitizer to
uors */

unsigned long activez; /* view active z */
} Viewinfo;

Color table element (type 5, level 1)
Color table elements are type 5 elements stored on level 1. One
color table element can be stored for each screen (left and right).
When MicroStation opens a design file it searches for color table
elements and adjusts the graphics controller(s) to match the color
table found. A byte value is stored for red, green and blue
intensities for each element color and the background
(0=background + 255 element colors).

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
short screen_flag; /* screen flag */
byte color_info[256][3]; /* color table info. */
} Color_table_type5;

MicroStation Application Elements (Type 66)
Type 66 elements are similar to type 5 elements in that they store
non-graphical data. Since the data in a type 66 element is not
associated with a level, levels distinguish between types of data.
For example, level 8 in type 66 is reserved for digitizing data.

Type 66 elements are not supported by IGDS. Early versions of
IGDS may report that the type 66 elements are invalid when
MicroStation design files are uploaded to a VAX. This problem
was corrected in later versions. In MicroStation, type 66 elements
can be deleted from a design file with one of the
DELETE66ELEMENTS commands.
18-58 MicroStation 95 Reference Guide

MicroStation Application Elements (Type 66)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
MicroStation reference file attachment element (type 66,
level 5)

Type 66 reference file attachment elements are stored on level 5.
They contain all the information necessary to define a single
reference file attachment. The structure is identical to that of the
type 5 reference file attachment element, except that some of the
values can be different.

A reference file attachment must be stored as a type 66 element if
any of the following are true:

• There are already 32 or more reference file attachments.

• In MicroStation Version 4.0 and later versions, the file_num
byte of the display section (high byte of word 51) can be a
value from 1–255, and therefore must be treated as an
unsigned byte. IGDS and versions of MicroStation prior to
Version 4.0 only allow values from 1–32.

• There are multiple clipping masks in that reference file
attachment.

• The clipping point array can have “disconnect” values in it.
These are recognized as points where both X and Y values are
0x8000000 (-2147483648). The part of the array before the
disconnect is the exterior clipping boundary. After the first
disconnect there is one or more interior clipping mask
boundaries, separated from each other by an additional
disconnect. If there are no clipping masks, there are no
disconnects. The number of clipping points stored in the
element (word 246 starting from 0) includes the number of
points in clipping boundary, the disconnects, and the number
of points in the clipping mask boundary or boundaries. Both
the clipping exterior and the clipping mask boundaries are
closed (the first point equals the last point).

• It is an attachment of a 2D reference file to a 3D master design
file.

• Bit 15 of the fb_opts word (word 52 starting at 0) in the display
section is set if the reference file is 2D and the master file is 3D.
This bit was always clear for IGDS and earlier MicroStation
versions. Interpretation of the remainder of the attachment
element is as for a 3D attachment. 3D elements are constructed
from the 2D elements in the reference file by setting all Z
values to 0.
MicroStation 95 Reference Guide 18-59

MicroStation Application Elements (Type 66)
MicroStation digitizer element (type 66, level 8)
The digitizing transformation and associated digitizing parameters
are stored in a type 66 element on level 8. The C structure is:

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
Uspoint2d extentlo; /* bottom left of active area

of
tablet */

Uspoint2d extenthi; /* top right of active area
of

tablet */
Uspoint2d origin; /* origin for the screen-

mapped
portion */

Uspoint2d corner; /* corner for the screen-
mapped

portion */
short defined; /* TRUE = transform valid */
double trans[3][4]; /* trans. from digitizer to

dgn.
file coords. */

double stream_delta; /* sampling delta (UORs) */
double stream_tol; /* shortest segment that must

be saved */
double angle_tol; /* angle above which point

must
be saved */

double area_tol; /* area above which point
must

be saved */
short extrawords[8]; /* currently unused */
} MicroStation_dig;
18-60 MicroStation 95 Reference Guide

MicroStation Application Elements (Type 66)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
MicroStation extended TCB element (type 66, level 9)
A type 66 element on level 9 is used to store MicroStation-specific
TCB variables (those that are not supported by IGDS). The C
structure is:

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
double axlock_angle; /* axis lock angle */
double axlock_origin; /* axis lock origin */
Ext_viewinfo ext_viewinfo[8]; /* ext'd view info. strucs.*/
Ext_locks ext_locks; /* extended lock bits */
long activecell; /* active cell (Radix 50) */
double actpat_scale; /* active patterning scale */
long activepat; /* active patterning cell */
long actpat_rowspc; /* active patterning row

spacing */
double actpat_angle; /* active patterning angle */
double actpat_angle2; /* active patterning angle */
long actpat_colspc; /* active patterning column

spacing */
long actpnt; /* active point (Radix 50) */
double actterm_scale; /* active line terminator

scale */
long activeterm; /* active line terminator */
short hilitecolor[2]; /* hilite color for two

screens */
short fullscreen_cursor;/* keypoint snap flag */
short keypnt_divisor; /* divisor for keypoint

snapping */
char celfilenm[50]; /* local cell lib. name */
short xorcolor[2]; /* exclusive or color */
} Mstcb_elm;

The Ext_viewinfo and Ext_locks structures are defined as
follows:

typedef struct ext_viewinfo
{
Ext_viewflags ext_flags; /* extended flags */
short classmask; /* class masks */
short unused; /* reserved for future use */
double perspective; /* perspective disappearing

point */
short padding[52]; /* reserved for future use */
} Ext_viewinfo;
MicroStation 95 Reference Guide 18-61

MicroStation Application Elements (Type 66)
typedef struct ext_viewflags
{

#ifndef (mc68000)
unsigned fill:1; /* true if element fill

enabled */
unsigned unused1:15; /* reserved for future use */
unsigned unused:16; /* reserved for future use */

#else
unsigned unused:16; /* reserved for future use */
unsigned unused1:15; /* reserved for future use */
unsigned fill:1; /* true = element fill

enabled */
#endif

} Ext_viewflags;

typedef struct ext_locks
{

#ifndef mc68000
unsigned axis_lock:1; /* Axis Lock */
unsigned auxinp:1; /* auxiliary input device */
unsigned show_pos:1; /* continuous coordinate

display */
unsigned autopan:1; /* automatic panning */
unsigned axis_override:1; /* override Axis Lock */
unsigned cell_stretch: 1; /* cell stretching */
unsigned iso_grid:1; /* isometric grid */
unsigned iso_cursor:1; /* isometric cursor */
unsigned full_cursor: 1; /* full screen cursor (PC

only)*/
unsigned iso_plane:2; /* 0=Top, 1=Left, 2=Right,

3=ALL*/
unsigned selection_set:1; /* enable selection set */
unsigned auto_handles:1; /* select elements upon

placement */
unsigned single_shot:1; /* single shot tool selection

*/
unsigned dont_restart:1; /* set if command doesn't

want to be
restarted */

unsigned view Single_shot:1; /* single shot view
commands */

unsigned snapCnstplane:1; /* snap to construction
plane */

unsigned cnstPlanePerp:1; /* snap perpendicular to
construction plane */

unsigned fillMode:1; /* not currently used */
unsigned iso_lock:1; /* isometric lock */
18-62 MicroStation 95 Reference Guide

MicroStation Application Elements (Type 66)

In
te

rg
ra

p
h

St
an

d
ar

d
 F

ile
 F

or
m

at
s

(E
le

m
en

t
St

ru
ct

ur
e)

 18
unsigned unused2:12; /* reserved for future
use */
#else

unsigned unused2:12; /* reserved for future
use */

unsigned iso_lock:1; /* isometric lock */
unsigned fillMode:1; /* not currently used */
unsigned cnstPlanePerp:1; /* snap perpendicular to

construction
plane */

unsigned snapCnstplane:1; /* snap to construction
plane */

unsigned viewSingle_shot:1; /* single shot view
commands */

unsigned dont_restart:1; /* set if command
doesn't want
 to be restarted */

unsigned single_shot:1; /* single shot tool
selection */

unsigned auto_handles:1; /* select elements when
placed */

unsigned selection_set:1; /* enable selection set
*/

unsigned iso_plane:2; /* 0=Top, 1=Left,
2=Right,

3=ALL */
unsigned full_cursor: 1; /* full screen cursor (PC

only)*/
unsigned iso_cursor:1; /* isometric cursor */
unsigned iso_grid:1; /* isometric grid */
unsigned cell_stretch: 1; /* cell stretching */
unsigned axis_override:1; /* override Axis Lock */
unsigned autopan:1; /* automatic panning */
unsigned show_pos:1; /* continuous coord.

display*/
unsigned auxinp:1; /* auxiliary input

device */
unsigned axis_lock:1; /* Axis Lock */

#endif
} Ext_locks;
MicroStation 95 Reference Guide 18-63

MicroStation Application Elements (Type 66)
Application startup element (type 66, level 10)
A type 66 element on level 10 is used to automatically start an
application when a design file is opened. The C structure is:

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
char startappcommand[256]; /* app. command line */
short reserved[110];
} MicroStation_Startapp;

Application data element (type 66, level 20)
Application-specific data is stored in a type 66 element on level
20. The specific element format is at the discretion of the
application developer. However, the maximum element size is
768 words, and word 18 must contain the signature value
assigned by Bentley Systems, Inc.

The general format is shown as a C structure below.

typedef struct
{
Elm_hdr ehdr; /* element header */
Disp_hdr dhdr; /* display header */
short signature; /* assigned signature */
.
. /* application data */
.
} Ms_appdata;)
18-64 MicroStation 95 Reference Guide

	Intergraph Standard File Formats (Element Structur...
	Types of Files
	Design File Header
	Primitive and complex elements
	Primitive elements
	Complex elements
	Element Representation
	Byte ordering
	Floating-point values
	Elements not described in this appendix

	Common Element Parameters
	Element header
	Point coordinates
	Rotation angle (2D) and quaternion (3D)
	Attribute linkage data

	Level Symbology (Type 10)
	Library Cell Header (Type 1)

	0. Graphic cell
	1. Command menu cell
	2. Cursor button menu cell
	3. Function key menu cell (not supported by MicroS...
	4. Matrix menu cell
	5. Tutorial cell
	Cell descriptions in cell libraries
	Cell Header (Type 2)
	Line Elements (Type 3)

	Line String (Type 4), Shape (Type 6), Curve (Type�...

	Fk,x = axd3 + bxd2 + cxd + Xk
	cx = tk
	bx = [3(Xk+1–Xk)/Dk – 2tk,x – tk+1,x] / Dk
	tk,x = (mk-1,x|mk+1,x–mk,x| + mk,x|mk-1,x–mk-2,x|)...
	tk,x = (mk+1,x+mk,x) / 2
	Text Node Header (Type 7)
	Complex Chain Headers (Type 12) and Complex�Shape ...
	Ellipse Elements (Type 15)
	Arc Elements (Type 16)
	Arc parameters

	Text Elements (Type 17)
	3D Surface Header (Type 18) and 3D Solid Header (T...
	Method of creation

	0=Surface of projection
	1=Bounded Plane
	2=Bounded Plane
	3=Right circular cylinder
	4=Right circular cone
	5=Tabulated cylinder
	6=Tabulated cone
	7=Convolute
	8=Surface of revolution
	0=Volume of projection
	1=Volume of revolution
	Elements in surfaces and solids
	Point String Elements (Type 22)
	Cone Elements (Type 23)
	Cone type
	Parameters

	B-spline Elements (Type 21, 24, 25, 26, 27, 28)
	B-spline curves
	B-spline surfaces
	B-spline curve header (type 27)
	B-spline surface header (type 24)
	B-spline pole element (type 21)
	B-spline surface boundary element (type 25)
	B-spline Knot element (type 26)
	B-spline Weight Factor element (type 28)

	Raster Header Element (Type 87)
	Raster Data Elements (Type 88)
	Group Data Elements (Type 5)
	Reference file attachment element (type 5, level 9...
	Named view element (type 5, level 3)
	Color table element (type 5, level 1)

	MicroStation Application Elements (Type 66)
	MicroStation reference file attachment element (ty...
	MicroStation digitizer element (type 66, level 8)
	MicroStation extended TCB element (type 66, level ...
	Application startup element (type 66, level 10)
	Application data element (type 66, level 20)

